DARI-Mark: Deep Learning and Attention Network for Robust Image Watermarking

水印 数字水印 人工智能 计算机科学 稳健性(进化) 嵌入 深度学习 计算机视觉 像素 模式识别(心理学) 图像(数学) 生物化学 基因 化学
作者
Yimeng Zhao,Chengyou Wang,Xiao Zhou,Zhiliang Qin
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:11 (1): 209-209 被引量:14
标识
DOI:10.3390/math11010209
摘要

At present, deep learning has achieved excellent achievements in image processing and computer vision and is widely used in the field of watermarking. Attention mechanism, as the research hot spot of deep learning, has not yet been applied in the field of watermarking. In this paper, we propose a deep learning and attention network for robust image watermarking (DARI-Mark). The framework includes four parts: an attention network, a watermark embedding network, a watermark extraction network, and an attack layer. The attention network used in this paper is the channel and spatial attention network, which calculates attention weights along two dimensions, channel and spatial, respectively, assigns different weights to pixels in different channels at different positions and is applied in the watermark embedding and watermark extraction stages. Through end-to-end training, the attention network can locate nonsignificant areas that are insensitive to the human eye and assign greater weights during watermark embedding, and the watermark embedding network selects this region to embed the watermark and improve the imperceptibility. In watermark extraction, by setting the loss function, larger weights can be assigned to watermark-containing features and small weights to noisy signals, so that the watermark extraction network focuses on features about the watermark and suppresses noisy signals in the attacked image to improve robustness. To avoid the phenomenon of gradient disappearance or explosion when the network is deep, both the embedding network and the extraction network have added residual modules. Experiments show that DARI-Mark can embed the watermark without affecting human subjective perception and that it has good robustness. Compared with other state-of-the-art watermarking methods, the proposed framework is more robust to JPEG compression, sharpening, cropping, and noise attacks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
RRRickyyy完成签到 ,获得积分10
1秒前
1秒前
爆米花应助紫竹魔笛采纳,获得10
2秒前
顺心怜寒完成签到 ,获得积分10
2秒前
千年雪松完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
貝壳完成签到,获得积分10
4秒前
坦率的语芙完成签到,获得积分10
4秒前
柏林寒冬应助Dandelion采纳,获得10
5秒前
丘比特应助hahhh7采纳,获得10
5秒前
柏林寒冬应助欣喜的薯片采纳,获得10
5秒前
高欣然发布了新的文献求助10
7秒前
雾栎昇完成签到,获得积分10
7秒前
Lees应助Binary采纳,获得10
7秒前
8秒前
渭水飞熊发布了新的文献求助30
8秒前
miaomiao完成签到,获得积分10
8秒前
能干发夹完成签到,获得积分20
9秒前
9秒前
joshar发布了新的文献求助10
10秒前
桃子发布了新的文献求助10
11秒前
无花果应助闪闪念文采纳,获得10
12秒前
欢呼青易发布了新的文献求助10
12秒前
13秒前
领导范儿应助ZZY采纳,获得10
13秒前
奚娜发布了新的文献求助10
14秒前
14秒前
共享精神应助文献通采纳,获得10
14秒前
14秒前
CodeCraft应助大力的忆霜采纳,获得10
15秒前
lucaswong发布了新的文献求助10
17秒前
17秒前
朴素羊发布了新的文献求助10
17秒前
Hello应助开朗亦绿采纳,获得10
18秒前
parasite完成签到,获得积分10
18秒前
科研通AI5应助Lee采纳,获得30
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4373077
求助须知:如何正确求助?哪些是违规求助? 3870155
关于积分的说明 12064152
捐赠科研通 3512832
什么是DOI,文献DOI怎么找? 1927722
邀请新用户注册赠送积分活动 969589
科研通“疑难数据库(出版商)”最低求助积分说明 868419