自方差
控制理论(社会学)
模型预测控制
估计员
计算机科学
分段
二次规划
噪音(视频)
数学
数学优化
统计
控制(管理)
人工智能
傅里叶变换
图像(数学)
数学分析
作者
Zhuang Wu,Murali R. Rajamani,James B. Rawlings,Jakob Stoustrup
出处
期刊:Proceedings of the ... American Control Conference
日期:2007-07-01
卷期号:93: 3630-3635
被引量:5
标识
DOI:10.1109/acc.2007.4282624
摘要
In this paper, the implementation of a new autocovariance least-square (ALS) technique for livestock hybrid ventilation systems and associated indoor climate with a model predictive control (MPC) strategy is presented. The design is based on thermal comfort parameters for poultry in barns and a combined dynamic model describing the entire system knowledge. Reference offset-free tracking is achieved using target calculation and quadratic programming and adding a disturbance model that accommodates unmeasured disturbances entering through the process input. The unknown noise covariances are diagnosed and corrected by applying the ALS estimator with the closed loop process data. The comparative simulations show the performance improvement with the ALS estimator in the presence of disturbances and moderate amount of error in the model parameters. The results demonstrate the high potential of ALS methods in improving the best practice of process control and estimation.
科研通智能强力驱动
Strongly Powered by AbleSci AI