Physics-informed reinforcement learning optimization of nuclear assembly design

强化学习 计算机科学 还原(数学) 人工智能 最优化问题 组合优化 嵌入 算法 数学 几何学
作者
Majdi I. Radaideh,Isaac Wolverton,Joshua J. Joseph,James J. Tusar,Uuganbayar Otgonbaatar,Nicholas Roy,Benoit Forget,Koroush Shirvan
出处
期刊:Nuclear Engineering and Design [Elsevier BV]
卷期号:372: 110966-110966 被引量:19
标识
DOI:10.1016/j.nucengdes.2020.110966
摘要

Optimization of nuclear fuel assemblies if performed effectively, will lead to fuel efficiency improvement, cost reduction, and safety assurance. However, assembly optimization involves solving high-dimensional and computationally expensive combinatorial problems. As such, fuel designers’ expert judgement has commonly prevailed over the use of stochastic optimization (SO) algorithms such as genetic algorithms and simulated annealing. To improve the state-of-art, we explore a class of artificial intelligence (AI) algorithms, namely, reinforcement learning (RL) in this work. We propose a physics-informed AI optimization methodology by establishing a connection through reward shaping between RL and the tactics fuel designers follow in practice by moving fuel rods in the assembly to meet specific constraints and objectives. The methodology utilizes RL algorithms, deep Q learning and proximal policy optimization, and compares their performance to SO algorithms. The methodology is applied on two boiling water reactor assemblies of low-dimensional ( ∼ 2 × 10 6 combinations) and high-dimensional ( ∼ 10 31 combinations) natures. The results demonstrate that RL is more effective than SO in solving high dimensional problems, i.e., 10 × 10 assembly, through embedding expert knowledge in form of game rules and effectively exploring the search space. For a given computational resources and timeframe relevant to fuel designers, RL algorithms outperformed SO through finding more feasible patterns, 4–5 times more than SO, and through increasing search speed, as indicated by the RL outstanding computational efficiency. The results of this work clearly demonstrate RL effectiveness as another decision support tool for nuclear fuel assembly optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助lllttt采纳,获得10
刚刚
一手灵魂完成签到,获得积分10
2秒前
科研通AI5应助阿布来也采纳,获得10
3秒前
Ldq完成签到 ,获得积分10
3秒前
過客完成签到 ,获得积分10
4秒前
发嗲的火龙果完成签到,获得积分10
4秒前
晨珂完成签到,获得积分10
8秒前
小蘑菇应助健忘的幻儿采纳,获得20
11秒前
12秒前
火星上忆寒完成签到,获得积分10
13秒前
王yp发布了新的文献求助10
19秒前
20秒前
纯情的远山完成签到,获得积分10
20秒前
小伙子完成签到,获得积分10
21秒前
22秒前
钵钵鸡发布了新的文献求助20
23秒前
深情安青应助nana采纳,获得10
24秒前
25秒前
25秒前
盛夏如花发布了新的文献求助10
27秒前
丘比特应助神兽下山采纳,获得10
29秒前
脑洞疼应助ylc采纳,获得20
29秒前
30秒前
momo发布了新的文献求助10
32秒前
希望天下0贩的0应助kai采纳,获得10
33秒前
赫如冰完成签到 ,获得积分10
34秒前
35秒前
dada完成签到,获得积分10
37秒前
xueluxin完成签到 ,获得积分10
37秒前
nana发布了新的文献求助10
38秒前
大模型应助王yp采纳,获得10
44秒前
45秒前
zhang完成签到 ,获得积分10
45秒前
袁筱筱筱筱完成签到,获得积分10
46秒前
ding应助霍三石采纳,获得10
46秒前
46秒前
47秒前
48秒前
本凡发布了新的文献求助10
49秒前
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Gray Matters: A Biography of Brain Surgery 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782405
求助须知:如何正确求助?哪些是违规求助? 3327872
关于积分的说明 10233525
捐赠科研通 3042794
什么是DOI,文献DOI怎么找? 1670227
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758884