材料科学
热导率
填料(材料)
复合材料
热传导
涂层
聚合物
表面改性
数码产品
热的
导电体
热阻
散热膏
机械工程
电气工程
物理
工程类
气象学
作者
Haoqi Ma,Bin Gao,Meiyu Wang,Zhenye Yuan,Jingbo Shen,Jingqi Zhao,Yakai Feng
标识
DOI:10.1007/s10853-020-05279-x
摘要
Thermal management has been considered as a key issue for high-power electronics. Thermal interface materials (TIMs) play an extremely important role in the field of thermal management. Owing to their excellent insulation, mechanical properties and low processing costs, functional polymers have become the popular candidate for preparing TIMs. In order to develop high thermally conductive TIMs, the inorganic fillers with high thermal conductivity are generally composited with polymers. For this purpose, some key technologies are needed to improve the dispersibility of fillers to reduce interfacial thermal resistance and increase thermal conduction channels. This paper reviews recent progresses on effective methods for improving thermal conductivity, which mainly include filler functionalization and processing, filler hybridization and coating, filler orientation and network. After implementing these strategies, the interfacial interaction between fillers and polymers, the synergy effect of different fillers and the thermal conduction pathway inside the matrix can be highly improved, hence enhancing the thermal conductivity of TIMs.
科研通智能强力驱动
Strongly Powered by AbleSci AI