Distinguishing Non-Small Cell Lung Cancer Subtypes in Fine Needle Aspiration Biopsies by Desorption Electrospray Ionization Mass Spectrometry Imaging

质谱成像 质谱法 萃取电喷雾电离 肺癌 化学 电喷雾电离 细针穿刺 医学 病理 活检 色谱法 质谱中的样品制备
作者
Alena Bensussan,John Q. Lin,Chunxiao Guo,Ruth L. Katz,Savitri Krishnamurthy,Erik N. K. Cressman,Lívia S. Eberlin
出处
期刊:Clinical Chemistry [American Association for Clinical Chemistry]
卷期号:66 (11): 1424-1433 被引量:27
标识
DOI:10.1093/clinchem/hvaa207
摘要

Distinguishing adenocarcinoma and squamous cell carcinoma subtypes of non-small cell lung cancers is critical to patient care. Preoperative minimally-invasive biopsy techniques, such as fine needle aspiration (FNA), are increasingly used for lung cancer diagnosis and subtyping. Yet, histologic distinction of lung cancer subtypes in FNA material can be challenging. Here, we evaluated the usefulness of desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to diagnose and differentiate lung cancer subtypes in tissues and FNA samples.DESI-MSI was used to analyze 22 normal, 26 adenocarcinoma, and 25 squamous cell carcinoma lung tissues. Mass spectra obtained from the tissue sections were used to generate and validate statistical classifiers for lung cancer diagnosis and subtyping. Classifiers were then tested on DESI-MSI data collected from 16 clinical FNA samples prospectively collected from 8 patients undergoing interventional radiology guided FNA.Various metabolites and lipid species were detected in the mass spectra obtained from lung tissues. The classifiers generated from tissue sections yielded 100% accuracy, 100% sensitivity, and 100% specificity for lung cancer diagnosis, and 73.5% accuracy for lung cancer subtyping for the training set of tissues, per-patient. On the validation set of tissues, 100% accuracy for lung cancer diagnosis and 94.1% accuracy for lung cancer subtyping were achieved. When tested on the FNA samples, 100% diagnostic accuracy and 87.5% accuracy on subtyping were achieved per-slide.DESI-MSI can be useful as an ancillary technique to conventional cytopathology for diagnosis and subtyping of non-small cell lung cancers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Green发布了新的文献求助10
刚刚
刚刚
刚刚
由哎完成签到,获得积分10
刚刚
为什么完成签到,获得积分10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得30
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
bkagyin应助ycd采纳,获得10
3秒前
科研通AI5应助搞怪不言采纳,获得10
5秒前
欣欣杨完成签到,获得积分20
6秒前
6秒前
wanci应助cherry采纳,获得10
7秒前
Zqq发布了新的文献求助10
7秒前
7秒前
铁臂阿童木完成签到,获得积分10
7秒前
8秒前
Melody发布了新的文献求助10
9秒前
要减肥含灵完成签到,获得积分10
10秒前
白日焰火完成签到 ,获得积分10
11秒前
12秒前
12秒前
13秒前
pcr163应助pp63采纳,获得100
15秒前
木同人发布了新的文献求助10
15秒前
wmm发布了新的文献求助10
16秒前
搞怪不言发布了新的文献求助10
17秒前
17秒前
18秒前
思量博千金完成签到,获得积分10
18秒前
英俊的铭应助猪猪hero采纳,获得10
19秒前
聪明灭绝完成签到 ,获得积分10
19秒前
lucaswen发布了新的文献求助20
21秒前
Green完成签到,获得积分10
21秒前
22秒前
愉快的傲霜完成签到,获得积分10
23秒前
山东人在南京完成签到 ,获得积分10
23秒前
UPUP完成签到,获得积分10
23秒前
SANFAN发布了新的文献求助10
25秒前
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805370
求助须知:如何正确求助?哪些是违规求助? 3350335
关于积分的说明 10348557
捐赠科研通 3066264
什么是DOI,文献DOI怎么找? 1683641
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243