Smart identification of psoriasis by images using convolutional neural networks: a case study in China

银屑病 卷积神经网络 医学 阶段(地层学) 人工智能 分类器(UML) 鉴定(生物学) 皮肤病科 计算机科学 植物 生物 古生物学
作者
Shuang Zhao,Bin Xie,Y. Li,Xin Zhao,Yehong Kuang,Jionglong Su,Xuanji He,Xian Wu,Wei Fan,Kai Huang,Jionglong Su,Yonghong Peng,Alexander A. Navarini,Wei Huang,Xiang Chen
出处
期刊:Journal of The European Academy of Dermatology and Venereology [Wiley]
卷期号:34 (3): 518-524 被引量:52
标识
DOI:10.1111/jdv.15965
摘要

Psoriasis is a chronic inflammatory skin disease, which holds a high incidence in China. However, professional dermatologists who can diagnose psoriasis early and correctly are insufficient in China, especially in the rural areas. A smart approach to identify psoriasis by pictures would be highly adaptable countrywide and could play a useful role in early diagnosis and regular treatment of psoriasis.Design and evaluation of a smart psoriasis identification system based on clinical images (without relying on a dermatoscope) that works effectively similar to a dermatologist.A set of deep learning models using convolutional neural networks (CNNs) was explored and compared in the system for automatic identification of psoriasis. The work was carried out on a standardized dermatological dataset with 8021 clinical images of 9 common disorders including psoriasis along with full electronic medical records of patients built over the last 9 years in China. A two-stage deep neural network was designed and developed to identify psoriasis. In the first stage, a multilabel classifier was trained to learn the visual patterns for each individual skin disease. In the second stage, the output of the first stage was utilized to distinguish psoriasis from other skin diseases.The area under the curve (AUC) of the two-stage model reached 0.981 ± 0.015, which outperforms a single-stage model. And, the classifier showed superior performance (missed diagnosis rate: 0.03, misdiagnosis rate: 0.04) than 25 Chinese dermatologists (missed diagnosis rate: 0.19, misdiagnosis rate: 0.10) in the diagnosis of psoriasis on 100 clinical images.Using clinical images to identify psoriasis is feasible and effective based on CNNs, which also builds a solid technical base for smart care of skin diseases especially psoriasis using mobile/tablet applications for teledermatology in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会飞的yu完成签到,获得积分10
刚刚
seven完成签到,获得积分10
1秒前
shweah2003完成签到,获得积分10
1秒前
3秒前
纯真如松完成签到,获得积分10
4秒前
曾曾完成签到,获得积分10
5秒前
顺利奇迹完成签到,获得积分10
8秒前
luxkex发布了新的文献求助10
10秒前
wwww发布了新的文献求助40
10秒前
10秒前
12秒前
12秒前
13秒前
天涯完成签到,获得积分10
14秒前
14秒前
seven关注了科研通微信公众号
14秒前
16秒前
ding应助巴拉巴拉采纳,获得10
16秒前
杨旸发布了新的文献求助10
16秒前
石一完成签到,获得积分10
17秒前
酷波er应助姜伟采纳,获得10
18秒前
18秒前
ls完成签到,获得积分10
18秒前
球球w发布了新的文献求助30
19秒前
小熊发布了新的文献求助10
20秒前
Eurus发布了新的文献求助30
20秒前
jerry完成签到,获得积分10
22秒前
朝朝完成签到,获得积分10
24秒前
25秒前
26秒前
nenoaowu发布了新的文献求助30
26秒前
王翎力完成签到,获得积分10
27秒前
77关注了科研通微信公众号
27秒前
Xuan_Y完成签到,获得积分10
27秒前
巅峰囚冰完成签到,获得积分10
28秒前
28秒前
28秒前
29秒前
祁依欧欧完成签到,获得积分10
29秒前
30秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838514
求助须知:如何正确求助?哪些是违规求助? 3380889
关于积分的说明 10516101
捐赠科研通 3100459
什么是DOI,文献DOI怎么找? 1707506
邀请新用户注册赠送积分活动 821794
科研通“疑难数据库(出版商)”最低求助积分说明 772947