Identification of 5 Gene Signatures in Survival Prediction for Patients with Lung Squamous Cell Carcinoma Based on Integrated Multiomics Data Analysis

鉴定(生物学) 基底细胞 生存分析 病理 生物 计算生物学 肿瘤科 医学 内科学 植物
作者
Hongxia Ma,Lihong Tong,Qian Zhang,Wenjun Chang,Feng-Sen Li
出处
期刊:BioMed Research International [Hindawi Publishing Corporation]
卷期号:2020: 1-19 被引量:9
标识
DOI:10.1155/2020/6427483
摘要

Lung squamous cell carcinoma (LSCC) is a frequently diagnosed cancer worldwide, and it has a poor prognosis. The current study is aimed at developing the prediction of LSCC prognosis by integrating multiomics data including transcriptome, copy number variation data, and mutation data analysis, so as to predict patients' survival and discover new therapeutic targets.RNASeq, SNP, CNV data, and LSCC patients' clinical follow-up information were downloaded from The Cancer Genome Atlas (TCGA), and the samples were randomly divided into two groups, namely, the training set and the validation set. In the training set, the genes related to prognosis and those with different copy numbers or with different SNPs were integrated to extract features using random forests, and finally, robust biomarkers were screened. In addition, a gene-related prognostic model was established and further verified in the test set and GEO validation set.We obtained a total of 804 prognostic-related genes and 535 copy amplification genes, 621 copy deletions genes, and 388 significantly mutated genes in genomic variants; noticeably, these genomic variant genes were found closely related to tumor development. A total of 51 candidate genes were obtained by integrating genomic variants and prognostic genes, and 5 characteristic genes (HIST1H2BH, SERPIND1, COL22A1, LCE3C, and ADAMTS17) were screened through random forest feature selection; we found that many of those genes had been reported to be related to LSCC progression. Cox regression analysis was performed to establish 5-gene signature that could serve as an independent prognostic factor for LSCC patients and can stratify risk samples in training set, test set, and external validation set (p < 0.01), and the 5-year survival areas under the curve (AUC) of both training set and validation set were > 0.67.In the current study, 5 gene signatures were constructed as novel prognostic markers to predict the survival of LSCC patients. The present findings provide new diagnostic and prognostic biomarkers and therapeutic targets for LSCC treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xu完成签到,获得积分20
5秒前
青栞发布了新的文献求助10
6秒前
852应助Brian采纳,获得10
7秒前
聪明白羊完成签到,获得积分10
10秒前
付志敏完成签到 ,获得积分10
10秒前
浩浩完成签到 ,获得积分10
10秒前
内向的小凡完成签到,获得积分0
18秒前
19秒前
忧虑的代容完成签到,获得积分10
21秒前
22秒前
22秒前
Brian发布了新的文献求助10
23秒前
小魔芋完成签到 ,获得积分10
25秒前
25秒前
Olsters完成签到 ,获得积分10
26秒前
Whim完成签到,获得积分0
28秒前
lunar完成签到 ,获得积分10
28秒前
ira发布了新的文献求助10
29秒前
29秒前
ludwig完成签到,获得积分10
29秒前
吴云鹏发布了新的文献求助10
32秒前
Brian完成签到,获得积分10
33秒前
骆大驼发布了新的文献求助10
34秒前
浅笑成风完成签到,获得积分10
36秒前
xu关注了科研通微信公众号
37秒前
39秒前
动人的亦云完成签到 ,获得积分10
41秒前
无花果应助cure采纳,获得10
41秒前
影默完成签到,获得积分10
41秒前
饱满的大碗完成签到 ,获得积分10
43秒前
Qintt完成签到 ,获得积分10
43秒前
黑米粥发布了新的文献求助10
45秒前
Shandongdaxiu发布了新的文献求助10
46秒前
木桶人plus完成签到 ,获得积分10
47秒前
qiqi发布了新的文献求助10
48秒前
AamirAli完成签到,获得积分10
50秒前
斯文败类应助advance采纳,获得10
55秒前
1分钟前
阔达曲奇发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777940
求助须知:如何正确求助?哪些是违规求助? 3323546
关于积分的说明 10214860
捐赠科研通 3038738
什么是DOI,文献DOI怎么找? 1667634
邀请新用户注册赠送积分活动 798236
科研通“疑难数据库(出版商)”最低求助积分说明 758315