Proteostasis Failure in Neurodegenerative Diseases: Focus on Oxidative Stress

蛋白质稳态 生物 蛋白酶体 细胞生物学 自噬 氧化应激 神经退行性变 未折叠蛋白反应 蛋白质聚集 蛋白质降解 神经科学 疾病 生物化学 医学 内质网 内科学 细胞凋亡
作者
Annika Höhn,Antonella Tramutola,Roberta Cascella
出处
期刊:Oxidative Medicine and Cellular Longevity [Hindawi Limited]
卷期号:2020: 1-21 被引量:166
标识
DOI:10.1155/2020/5497046
摘要

Protein homeostasis or proteostasis is an essential balance of cellular protein levels mediated through an extensive network of biochemical pathways that regulate different steps of the protein quality control, from the synthesis to the degradation. All proteins in a cell continuously turn over, contributing to development, differentiation, and aging. Due to the multiple interactions and connections of proteostasis pathways, exposure to stress conditions may cause various types of protein damage, altering cellular homeostasis and disrupting the entire network with additional cellular stress. Furthermore, protein misfolding and/or alterations during protein synthesis results in inactive or toxic proteins, which may overload the degradation mechanisms. The maintenance of a balanced proteome, preventing the formation of impaired proteins, is accomplished by two major catabolic routes: the ubiquitin proteasomal system (UPS) and the autophagy-lysosomal system. The proteostasis network is particularly important in nondividing, long-lived cells, such as neurons, as its failure is implicated with the development of neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. These neurological disorders share common risk factors such as aging, oxidative stress, environmental stress, and protein dysfunction, all of which alter cellular proteostasis, suggesting that general mechanisms controlling proteostasis may underlay the etiology of these diseases. In this review, we describe the major pathways of cellular proteostasis and discuss how their disruption contributes to the onset and progression of neurodegenerative diseases, focusing on the role of oxidative stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ab完成签到,获得积分10
刚刚
CodeCraft应助大白采纳,获得10
1秒前
骑着火车撵火箭完成签到,获得积分10
1秒前
1秒前
Orange应助追寻梦之采纳,获得100
2秒前
2秒前
WangXinlin完成签到,获得积分10
3秒前
莫三颜完成签到,获得积分10
3秒前
大模型应助Hmz采纳,获得10
3秒前
汤圆有奶瓶完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
帅气谷丝发布了新的文献求助10
5秒前
zy完成签到 ,获得积分10
6秒前
可爱的函函应助星星采纳,获得10
6秒前
6秒前
大模型应助YLi_746采纳,获得10
7秒前
alex发布了新的文献求助10
7秒前
Orange应助ajialala采纳,获得10
7秒前
香蕉觅云应助干净的时光采纳,获得10
7秒前
wzppp发布了新的文献求助10
9秒前
桐桐应助77采纳,获得10
9秒前
咩咩完成签到,获得积分10
9秒前
小二郎应助朱小燕采纳,获得10
10秒前
完美世界应助小菠萝采纳,获得10
10秒前
lhm完成签到,获得积分10
10秒前
skyangar发布了新的文献求助10
11秒前
11秒前
CipherSage应助Li采纳,获得10
12秒前
彭松发布了新的文献求助10
13秒前
田様应助vague采纳,获得10
14秒前
王莉发布了新的文献求助10
14秒前
14秒前
15秒前
Ava应助虚拟的水壶采纳,获得10
15秒前
15秒前
文艺的冬卉完成签到,获得积分20
16秒前
Emma_Lee完成签到,获得积分20
17秒前
sam完成签到,获得积分10
17秒前
Hmz发布了新的文献求助10
17秒前
朴素羊完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653296
求助须知:如何正确求助?哪些是违规求助? 4789685
关于积分的说明 15063648
捐赠科研通 4811856
什么是DOI,文献DOI怎么找? 2574143
邀请新用户注册赠送积分活动 1529815
关于科研通互助平台的介绍 1488524