Ternary organic solar cells based on non-fullerene acceptors: A review

有机太阳能电池 三元运算 富勒烯 材料科学 能量转换效率 接受者 活动层 纳米技术 光伏系统 太阳能电池 光电子学 计算机科学 化学 图层(电子) 物理 电气工程 有机化学 工程类 凝聚态物理 薄膜晶体管 程序设计语言
作者
Li‐Chun Chang,Ming Sheng,Leiping Duan,Ashraf Uddin
出处
期刊:Organic Electronics [Elsevier BV]
卷期号:90: 106063-106063 被引量:74
标识
DOI:10.1016/j.orgel.2021.106063
摘要

Organic solar cells (OSCs) have reached their second golden age in recent two years with a boosted number of publications. Non-fullerene acceptor (NFA) materials have become a rising star in the field which are widely applied in organic solar cells because of their excellent optoelectronic properties, such as strong light-harvesting ability and tunable energy level. Unlike the low synthetic flexibility and high production cost of fullerene materials, NFAs exhibit flexible structures, and relatively low fabrication costs. Recently, the ternary strategy has become another hot research topic in the field, which introduces a third component into the binary host system for OSCs. The application of a ternary strategy can break the limits of light absorption brought by the host system, improve the morphology and energy level alignment for the active layer and thus improved the efficiency of organic solar cell devices. Benefiting from the advancement in both NFA and ternary strategy, the power conversion efficiency (PCE) of organic solar cell has exceeded over 17.5% to date. A comprehensive review of the recent progress in NFA based ternary OSCs (TOSCs) is needed in the field. Herein, this review mainly focuses on recent research on ternary organic solar cells using NFA materials during the last two years. Firstly, device physics and frequently used active materials in NFA based TOSCs are summarized and discussed. Then, the recent reported high-performance NFA based TOSCs are reviewed. Finally, the outlook and future research direction in the field are proposed. This review aims to provide an insight into NFA based TOSCs and help researchers to explore the full potential of OSCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
夏硕士应助科研通管家采纳,获得10
刚刚
刚刚
海聪天宇完成签到,获得积分10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
叮叮爱吃糖完成签到,获得积分10
刚刚
1秒前
图图完成签到,获得积分10
1秒前
1秒前
跳跃的含双完成签到,获得积分20
1秒前
烟花应助longwang采纳,获得10
1秒前
充电宝应助权灵萱采纳,获得10
2秒前
昊康好发布了新的文献求助10
2秒前
3秒前
科研通AI5应助勤劳小海豚采纳,获得10
3秒前
四姑娘完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
fmx发布了新的文献求助10
4秒前
5秒前
wujiming完成签到,获得积分10
5秒前
跳跃从雪完成签到 ,获得积分10
5秒前
JamesPei应助笨笨芮采纳,获得10
5秒前
小鱼吐泡泡完成签到,获得积分10
5秒前
天天快乐应助liuchuck采纳,获得10
6秒前
7秒前
jiaoyq617发布了新的文献求助10
7秒前
7秒前
顾矜应助清爽的诗云采纳,获得10
7秒前
窝窝头发布了新的文献求助10
8秒前
小田心发布了新的文献求助10
8秒前
8秒前
羽翼发布了新的文献求助10
8秒前
9秒前
默默地读文献完成签到,获得积分0
9秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New digital musical instruments : control and interaction beyond the keyboard 200
English language teaching materials : theory and practice 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835562
求助须知:如何正确求助?哪些是违规求助? 3377932
关于积分的说明 10501197
捐赠科研通 3097494
什么是DOI,文献DOI怎么找? 1705854
邀请新用户注册赠送积分活动 820756
科研通“疑难数据库(出版商)”最低求助积分说明 772221