Recognition of Urban Functions and Mixed Use Based on Residents’ Movement and Topic Generation Model: The Case of Wuhan, China

潜在Dirichlet分配 计算机科学 熵(时间箭头) 数据挖掘 功能数据分析 网格 直方图 兴趣点 主题模型 情报检索 地理 人工智能 机器学习 图像(数学) 量子力学 物理 大地测量学
作者
Haifu Cui,Liang Wu,Sheng Hu,Rujuan Lu,Shanlin Wang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:12 (18): 2889-2889 被引量:27
标识
DOI:10.3390/rs12182889
摘要

The rapid evolution of cities has brought new challenges to urban planning and management. The accurate evaluation of urban functional structure and mixed use is critical, especially at a fine scale such as by blocks. The composition and mixing of urban spatial functions calculated by remote sensing and statistics are non-quantitative and undetailed. The text topic models are often applied to process text data, but are rarely used to mine semantic information in quantitative data. Therefore, this paper attempts to carry out research on the recognition of urban functions and mixed use using a text topic generation model based on resident mobile data. First, the area within Wuhan Third Ring Road was divided into 2451 units at a grid size of 500 m × 500 m. The histogram-latent Dirichlet allocation (H-LDA) and information entropy were applied to assign different grid units to correct the functional topics and topic information entropy (TIE). Second, the functional categories of different analysis units were calculated using the point of interest (POI), frequency density (FD) and category proportion (CP) indicators, while the functional information entropy (FIE) based on the POI was calculated. Then, the urban functions and mixtures identified by the two kinds of data were compared and analyzed. Finally, referring to the geographic information in streetscape map and applying correlation analysis, the function and mixing results obtained from the experiment were verified. Studies have shown that the H-LDA model can identify bridges, which the POI data have shown is challenging to identify without attributes such as length. The function recognition accuracy of the H-LDA model is 89.3%, which is higher than K-means algorithm and Word2vec models. The correlation coefficient between FIE and TIE is 0.587, indicating that both are highly correlated. These explain the accuracy and rationality of identifying city functions and mixtures based on the H-LDA model. The H-LDA model can be applied to functional computing and fine-scale urban mixed function planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微雨若,,完成签到 ,获得积分10
1秒前
行云流水完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
愉快的溪流完成签到 ,获得积分10
3秒前
6秒前
哇塞完成签到 ,获得积分10
6秒前
BAI_1完成签到,获得积分10
10秒前
曹国庆完成签到 ,获得积分10
10秒前
薛乎虚完成签到 ,获得积分10
11秒前
12秒前
cata完成签到,获得积分10
12秒前
搞怪薯片发布了新的文献求助10
13秒前
13秒前
小星星完成签到 ,获得积分10
16秒前
18秒前
LY0430完成签到 ,获得积分10
20秒前
小黄豆完成签到,获得积分10
21秒前
小涛涛完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
急诊守夜人完成签到 ,获得积分10
23秒前
悦耳冰蓝完成签到,获得积分10
23秒前
songyu完成签到,获得积分10
24秒前
阜睿完成签到 ,获得积分10
24秒前
斑马完成签到,获得积分10
26秒前
27秒前
风里等你完成签到,获得积分10
27秒前
爱科研的小虞完成签到 ,获得积分10
27秒前
lydiaabc完成签到,获得积分10
27秒前
27秒前
安静严青完成签到 ,获得积分10
28秒前
自强不息完成签到,获得积分10
30秒前
东方半仙完成签到 ,获得积分10
31秒前
迷路凌柏完成签到 ,获得积分10
32秒前
香蕉觅云应助SABUBU采纳,获得20
33秒前
LJ_2完成签到 ,获得积分10
33秒前
CodeCraft应助jasonwee采纳,获得10
34秒前
34秒前
所所应助小猪采纳,获得10
37秒前
anfly完成签到,获得积分10
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5596013
求助须知:如何正确求助?哪些是违规求助? 4681126
关于积分的说明 14818458
捐赠科研通 4655379
什么是DOI,文献DOI怎么找? 2535752
邀请新用户注册赠送积分活动 1503584
关于科研通互助平台的介绍 1469846