A Machine Learning decision-making tool for extubation in Intensive Care Unit patients

机械通风 机器学习 重症监护室 医学 重症监护 人工智能 支持向量机 人口 决策树 重症监护医学 计算机科学 急诊医学 麻醉 环境卫生
作者
Alexandre Fabregat,Mónica Magret,J. A. Ferré,Antón Vernet,Neus Guasch,Alejandro Rodríguez,Josep Gómez,María Bodí
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:200: 105869-105869 被引量:35
标识
DOI:10.1016/j.cmpb.2020.105869
摘要

Background and Objective: To increase the success rate of invasive mechanical ventilation weaning in critically ill patients using Machine Learning models capable of accurately predicting the outcome of programmed extubations. Methods: The study population was adult patients admitted to the Intensive Care Unit. Target events were programmed extubations, both successful and failed. The working dataset is assembled by combining heterogeneous data including time series from Clinical Information Systems, patient demographics, medical records and respiratory event logs. Three classification learners have been compared: Logistic Discriminant Analysis, Gradient Boosting Method and Support Vector Machines. Standard methodologies have been used for preprocessing, hyperparameter tuning and resampling. Results: The Support Vector Machine classifier is found to correctly predict the outcome of an extubation with a 94.6% accuracy. Contrary to current decision-making criteria for extubation based on Spontaneous Breathing Trials, the classifier predictors only require monitor data, medical entry records and patient demographics. Conclusions: Machine Learning-based tools have been found to accurately predict the extubation outcome in critical patients with invasive mechanical ventilation. The use of this important predictive capability to assess the extubation decision could potentially reduce the rate of extubation failure, currently at 9%. With about 40% of critically ill patients eventually receiving invasive mechanical ventilation during their stay and given the serious potential complications associated to reintubation, the excellent predictive ability of the model presented here suggests that Machine Learning techniques could significantly improve the clinical outcomes of critical patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
Xiaoming完成签到,获得积分0
3秒前
3秒前
3秒前
科研通AI5应助wangzw采纳,获得10
4秒前
香蕉觅云应助凶狠的冷松采纳,获得10
5秒前
Shelby发布了新的文献求助10
5秒前
雨柏完成签到 ,获得积分10
6秒前
JEEH发布了新的文献求助10
7秒前
jiaxin完成签到,获得积分10
9秒前
11秒前
12秒前
wang发布了新的文献求助10
12秒前
A9W01U发布了新的文献求助10
13秒前
Hello应助科研通管家采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
17秒前
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
kingwill应助科研通管家采纳,获得30
17秒前
科研助手6应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
Anna完成签到,获得积分10
21秒前
21秒前
逻辑发布了新的文献求助10
22秒前
花肠完成签到,获得积分10
22秒前
风趣的野狼完成签到,获得积分10
23秒前
wang完成签到,获得积分10
24秒前
fawr完成签到 ,获得积分10
25秒前
元宵完成签到 ,获得积分10
25秒前
无私妙菡完成签到,获得积分10
25秒前
26秒前
迷人的寒风完成签到,获得积分10
26秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802474
求助须知:如何正确求助?哪些是违规求助? 3348068
关于积分的说明 10336437
捐赠科研通 3064012
什么是DOI,文献DOI怎么找? 1682348
邀请新用户注册赠送积分活动 808078
科研通“疑难数据库(出版商)”最低求助积分说明 763997