Vascularised Brain Organoids: Engineering Strategies and Neurobiological Applications

类有机物 神经科学 人脑 再生医学 人类疾病 生物 药物发现 药物开发 组织工程 血管网 诱导多能干细胞 计算机科学 神经血管束 过程(计算) 脑组织 血脑屏障 干细胞 大脑发育 轴突引导 药物输送 再生(生物学)
作者
Yeajin Song,Hyejin Jo,Seokchan Jeong,Inseon Kim,Seunghun S. Lee
出处
期刊:Cell Proliferation [Wiley]
卷期号:: e70161-e70161
标识
DOI:10.1111/cpr.70161
摘要

ABSTRACT Brain organoids have become an essential platform for studying human neural development and neurological disorders. Yet, one major limitation of conventional brain organoids is their lack of vascular structures. This deficiency restricts organoid size, contributes to necrotic core formation, and hampers their functional maturation. Introducing vascularization offers a compelling solution—it enhances nutrient delivery, supports neurogenesis, and fosters the development of interfaces that resemble the blood–brain barrier (BBB). In this review, we explore how vascularization enhances the structural and physiological relevance of brain organoids and its growing significance in disease modelling and therapeutic screening. We examine current methodologies for engineering vascularized brain organoids (vBOs), including co‐culturing with endothelial cells (ECs), transcriptional programming, tissue fusion techniques, microfluidic perfusion systems, and 3D bioprinting. These strategies vary in complexity, scalability, and the extent to which they achieve vascular integration. Functionally, vBOs demonstrate improved oxygen diffusion, enhanced synaptic development, and more robust barrier properties. Such advances enable modelling of complex neurovascular conditions like stroke, glioblastoma, and BBB dysfunction. Moreover, vBOs are emerging as valuable tools in developmental studies and personalised medicine, supporting patient‐derived modelling and large‐scale drug testing in BBB‐relevant contexts. Despite these advances, replicating the structural complexity, functionality, and long‐term stability of native vasculature remains challenging. We discuss current limitations and highlight innovative approaches, including the use of next‐generation biomaterials and dynamic perfusion technologies. Ultimately, vBOs mark a significant step towards creating physiologically accurate in vitro models of the human brain—offering new opportunities for neuroscience research, drug development, and regenerative medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
asdfzxcv应助承一采纳,获得10
1秒前
小扁大王完成签到 ,获得积分10
1秒前
Marvin发布了新的文献求助10
2秒前
2秒前
萝卜应助li采纳,获得20
3秒前
负责惜文完成签到 ,获得积分10
3秒前
充电宝应助Irislee采纳,获得30
4秒前
杨帆完成签到,获得积分20
4秒前
4秒前
xdl120318完成签到,获得积分10
4秒前
6秒前
6秒前
8秒前
xdl120318发布了新的文献求助10
8秒前
8秒前
怕孤单的寒天完成签到,获得积分10
9秒前
孙萌萌发布了新的文献求助10
10秒前
小宋同学完成签到,获得积分10
10秒前
10秒前
杜琦发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
wed关闭了wed文献求助
12秒前
12秒前
13秒前
14秒前
搜集达人应助123采纳,获得10
14秒前
科目三应助王迪采纳,获得10
15秒前
16秒前
田博妍发布了新的文献求助10
16秒前
学术屎壳郎完成签到,获得积分10
17秒前
18秒前
爆米花应助孙萌萌采纳,获得10
20秒前
20秒前
还来得及发布了新的文献求助10
20秒前
21秒前
香蕉诗蕊应助瘦瘦爆米花采纳,获得10
21秒前
Hui_2023发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642999
求助须知:如何正确求助?哪些是违规求助? 4760428
关于积分的说明 15019750
捐赠科研通 4801483
什么是DOI,文献DOI怎么找? 2566801
邀请新用户注册赠送积分活动 1524658
关于科研通互助平台的介绍 1484255