Deep image enhancement for ill light imaging

计算机科学 人工智能 计算机视觉 平滑度 约束(计算机辅助设计) 一致性(知识库) 反射(计算机编程) 图像(数学) 噪音(视频) 数学 几何学 数学分析 程序设计语言
作者
Rizwan Khan,You Yang,Qiong Liu,Jialie Shen,Bing Li
出处
期刊:Journal of the Optical Society of America [Optica Publishing Group]
卷期号:38 (6): 827-827 被引量:12
标识
DOI:10.1364/josaa.410316
摘要

Imaging in the natural scene under ill lighting conditions (e.g., low light, back-lit, over-exposed front-lit, and any combinations of them) suffers from both over- and under-exposure at the same time, whereas processing of such images often results in over- and under-enhancement. A single small image sensor can hardly provide satisfactory quality for ill lighting conditions with ordinary optical lenses in capturing devices. Challenges arise in the maintenance of a visual smoothness between those regions, while color and contrast should be well preserved. The problem has been approached by various methods, including multiple sensors and handcrafted parameters, but extant model capacity is limited to only some specific scenes (i.e., lighting conditions). Motivated by these challenges, in this paper, we propose a deep image enhancement method for color images captured under ill lighting conditions. In this method, input images are first decomposed into reflection and illumination maps with the proposed layer distribution loss net , where the illumination blindness and structure degradation problem can be subsequently solved via these two components, respectively. The hidden degradation in reflection and illumination is tuned with a knowledge-based adaptive enhancement constraint designed for ill illuminated images. The model can maintain a balance of smoothness and contribute to solving the problem of noise besides over- and under-enhancement. The local consistency in illumination is achieved via a repairing operation performed in the proposed Repair-Net . The total variation operator is optimized to acquire local consistency, and the image gradient is guided with the proposed enhancement constraint. Finally, a product of updated reflection and illumination maps reconstructs an enhanced image. Experiments are organized under both very low exposure and ill illumination conditions, where a new dataset is also proposed. Results on both experiments show that our method has superior performance in preserving structural and textural details compared to other states of the art, which suggests that our method is more practical in future visual applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助Lxy采纳,获得10
刚刚
行7发布了新的文献求助10
2秒前
欧小仙完成签到,获得积分10
3秒前
刮台风发布了新的文献求助10
3秒前
mll完成签到,获得积分10
4秒前
万能图书馆应助Leee采纳,获得10
5秒前
Gra发布了新的文献求助10
6秒前
344061512完成签到 ,获得积分10
6秒前
有魅力小懒虫完成签到,获得积分10
7秒前
7秒前
友人完成签到,获得积分10
8秒前
mimiC完成签到,获得积分10
10秒前
胖虎完成签到 ,获得积分10
10秒前
夕诙完成签到,获得积分0
11秒前
11秒前
毛钱发布了新的文献求助10
12秒前
pcx发布了新的文献求助10
12秒前
12秒前
Jasper应助AoAoo采纳,获得10
12秒前
扶苏完成签到 ,获得积分10
13秒前
零零完成签到,获得积分10
13秒前
情怀应助执剑燃此生采纳,获得10
14秒前
15秒前
夕痕完成签到,获得积分10
15秒前
16秒前
ZZQ完成签到 ,获得积分10
17秒前
科目三应助秋秋采纳,获得10
17秒前
18秒前
CDH发布了新的文献求助10
19秒前
小马过河完成签到,获得积分10
20秒前
羅凪菌完成签到,获得积分10
20秒前
于冬雪完成签到 ,获得积分10
21秒前
21秒前
大胆的夏天完成签到,获得积分10
23秒前
Josie完成签到 ,获得积分10
23秒前
sss完成签到,获得积分10
25秒前
26秒前
26秒前
26秒前
尹冰露完成签到,获得积分10
28秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838631
求助须知:如何正确求助?哪些是违规求助? 3380977
关于积分的说明 10516656
捐赠科研通 3100565
什么是DOI,文献DOI怎么找? 1707592
邀请新用户注册赠送积分活动 821803
科研通“疑难数据库(出版商)”最低求助积分说明 772980