Machine learning approaches in predicting ambulatory same day discharge patients after total hip arthroplasty

医学 机器学习 逻辑回归 随机森林 人工智能 回廊的 人工神经网络 队列 算法 外科 计算机科学 内科学
作者
Haoyan Zhong,Jashvant Poeran,Alex Gu,Lauren Wilson,Alejandro González Della Valle,Stavros G. Memtsoudis,Jiabin Liu
出处
期刊:Regional Anesthesia and Pain Medicine [BMJ]
卷期号:46 (9): 779-783 被引量:34
标识
DOI:10.1136/rapm-2021-102715
摘要

With continuing financial and regulatory pressures, practice of ambulatory total hip arthroplasty is increasing. However, studies focusing on selection of optimal candidates are burdened by limitations related to traditional statistical approaches. Hereby we aimed to apply machine learning algorithm to identify characteristics associated with optimal candidates.This retrospective cohort study included elective total hip arthroplasty (n=63 859) recorded in National Surgical Quality Improvement Program dataset from 2017 to 2018. The main outcome was length of stay. A total of 40 candidate variables were considered. We applied machine learning algorithms (multivariable logistic regression, artificial neural networks, and random forest models) to predict length of stay=0 day. Models' accuracies and area under the curve were calculated.Applying machine learning models to compare length of stay=0 day to length of stay=1-3 days cases, we found area under the curve of 0.715, 0.762, and 0.804, accuracy of 0.65, 0.73, and 0.81 for logistic regression, artificial neural networks, and random forest model, respectively. Regarding the most important predictive features, anesthesia type, body mass index, age, ethnicity, white blood cell count, sodium level, and alkaline phosphatase were highlighted in machine learning models.Machine learning algorithm exhibited acceptable model quality and accuracy. Machine learning algorithms highlighted the as yet unrecognized impact of laboratory testing on future patient ambulatory pathway assignment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
多年以后完成签到,获得积分10
3秒前
Postmalone完成签到,获得积分10
4秒前
Gauss应助一烟尘采纳,获得30
6秒前
单薄的夜南应助一烟尘采纳,获得10
6秒前
嘻嘻哈哈应助djbj2022采纳,获得50
7秒前
福福yu完成签到,获得积分10
7秒前
小茶发布了新的文献求助10
7秒前
姚俊发布了新的文献求助10
7秒前
杨仕喜完成签到,获得积分10
9秒前
zhongbo发布了新的文献求助10
9秒前
可爱丸子发布了新的文献求助10
9秒前
leo完成签到,获得积分10
10秒前
10秒前
lpy完成签到 ,获得积分10
13秒前
77最可爱完成签到,获得积分10
13秒前
15秒前
17秒前
17秒前
NexusExplorer应助zchchem采纳,获得10
18秒前
Kobe完成签到,获得积分10
18秒前
刘威完成签到,获得积分10
19秒前
弗洛伊德的梦完成签到,获得积分10
20秒前
20秒前
lasalu应助科研通管家采纳,获得10
21秒前
丘比特应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
星辰大海应助科研通管家采纳,获得10
21秒前
xxfsx应助科研通管家采纳,获得10
21秒前
changping应助科研通管家采纳,获得150
22秒前
科目三应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
zhonglv7应助科研通管家采纳,获得10
22秒前
chenqiumu应助科研通管家采纳,获得150
22秒前
changping应助科研通管家采纳,获得10
22秒前
英姑应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306557
求助须知:如何正确求助?哪些是违规求助? 4452324
关于积分的说明 13854559
捐赠科研通 4339805
什么是DOI,文献DOI怎么找? 2382859
邀请新用户注册赠送积分活动 1377728
关于科研通互助平台的介绍 1345407