模型预测控制
控制理论(社会学)
观察员(物理)
线性系统
区间(图论)
有界函数
鲁棒控制
计算机科学
国家(计算机科学)
数学优化
稳健性(进化)
数学
控制(管理)
控制系统
工程类
算法
人工智能
物理
电气工程
数学分析
组合数学
化学
基因
量子力学
生物化学
作者
Alex Reis de Souza,Denis Efimov,Tarek Raïssi,Xubin Ping,Alex dos Reis de Souza
出处
期刊:Automatica
[Elsevier BV]
日期:2022-01-01
卷期号:135: 109951-109951
被引量:11
标识
DOI:10.1016/j.automatica.2021.109951
摘要
This work addresses the problem of robust output feedback model predictive control for discrete-time, constrained linear systems corrupted by (bounded) state and measurement disturbances. Using the available information on measurements and uncertainty bounds, the objective is to stabilize such a system while robustly respecting the imposed constraints on state and control. To this end, interval observer and predictor with guaranteed performance are incorporated into the classic MPC scheme. This new approach offers advantages such as enlarged feasible regions for the optimal control problem, low computational burden, and ease of design.
科研通智能强力驱动
Strongly Powered by AbleSci AI