Causal Interactions Between the Default Mode Network and Central Executive Network in Patients with Major Depression

默认模式网络 心理学 重性抑郁障碍 神经科学 静息状态功能磁共振成像 萧条(经济学) 认知心理学 功能磁共振成像 认知 经济 宏观经济学
作者
Jiaming Li,Jian Liu,Yufang Zhong,Huaning Wang,Baoyu Yan,Kaizhong Zheng,Wei Lei,Hongbing Lu,Baojuan Li
出处
期刊:Neuroscience [Elsevier]
卷期号:475: 93-102 被引量:29
标识
DOI:10.1016/j.neuroscience.2021.08.033
摘要

Two different but interacting neural systems exist in the human brain: the task positive networks and task negative networks. One of the most important task positive networks is the central executive network (CEN), while the task negative network generally refers to the default mode network (DMN), which usually demonstrates task-induced deactivation. Although previous studies have clearly shown the association of both the CEN and DMN with major depressive disorder (MDD), how the causal interactions between these two networks change in depressed patients remains unclear. In the current study, 99 subjects (43 patients with MDD and 56 healthy controls) were recruited with their resting-state fMRI data collected. After data preprocessing, spectral dynamic causal modeling (spDCM) was used to investigate the causal interactions within and between the DMN and CEN. Group commonalities and differences in causal interaction patterns within and between the CEN and DMN in patients and controls were assessed by a parametric empirical Bayes (PEB) model. Both subject groups demonstrated significant effective connectivity between regions of the CEN and DMN. In particular, we detected inhibitory influences from the CEN to the DMN with node-level PEB analyses, which may help to explain the anticorrelations between these two networks consistently reported in previous studies. Compared with healthy controls, patients with MDD showed increased effective connectivity within the CEN and decreased connectivity from regions of the CEN to DMN, suggesting impaired control of the DMN by the CEN in these patients. These findings might provide new insights into the neural substrates of MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
清欢发布了新的文献求助10
刚刚
御风善行发布了新的文献求助10
1秒前
风清扬发布了新的文献求助10
1秒前
顾矜应助健壮小天鹅采纳,获得10
1秒前
OYYO完成签到,获得积分10
1秒前
科研通AI6应助Darcy采纳,获得30
1秒前
1秒前
糖果铺子完成签到,获得积分10
2秒前
科研通AI6应助虎虎生威采纳,获得10
3秒前
sakyadamo发布了新的文献求助10
4秒前
苏大脸发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
明理不乐发布了新的文献求助10
5秒前
数学自动化完成签到,获得积分10
7秒前
小马甲应助化雪彼岸采纳,获得10
7秒前
在水一方应助小丁采纳,获得10
7秒前
Mercy发布了新的文献求助10
8秒前
王富贵关注了科研通微信公众号
9秒前
李大柱发布了新的文献求助10
11秒前
Kee完成签到,获得积分20
12秒前
糖果铺子发布了新的文献求助10
15秒前
Erste完成签到 ,获得积分10
16秒前
Ava应助李大柱采纳,获得10
16秒前
Owen应助Mercy采纳,获得10
16秒前
所所应助lee采纳,获得10
18秒前
18秒前
bkagyin应助是苗苗丫采纳,获得10
19秒前
19秒前
汉堡包应助米饭多加水采纳,获得10
20秒前
吃茶去给吃茶去的求助进行了留言
20秒前
科研小新发布了新的文献求助30
21秒前
freyaaaaa应助等待雅寒采纳,获得200
24秒前
科研通AI6应助Forest采纳,获得10
24秒前
化雪彼岸发布了新的文献求助10
25秒前
怡然新之完成签到 ,获得积分10
25秒前
lily发布了新的文献求助10
25秒前
25秒前
李健的粉丝团团长应助qrr采纳,获得10
25秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502002
求助须知:如何正确求助?哪些是违规求助? 4598010
关于积分的说明 14462250
捐赠科研通 4531639
什么是DOI,文献DOI怎么找? 2483444
邀请新用户注册赠送积分活动 1466888
关于科研通互助平台的介绍 1439496