Incomplete multi-modal brain image fusion for epilepsy classification

计算机科学 癫痫 模态(人机交互) 人工智能 模式 稳健性(进化) 机器学习 模式识别(心理学) 代表(政治) 心理学 神经科学 社会学 法学 化学 基因 政治 生物化学 社会科学 政治学
作者
Qi Zhu,Huijie Li,Haizhou Ye,Zhiqiang Zhang,Ran Wang,Zizhu Fan,Daoqiang Zhang
出处
期刊:Information Sciences [Elsevier]
卷期号:582: 316-333 被引量:5
标识
DOI:10.1016/j.ins.2021.09.035
摘要

Multi-modal brain imaging data reflect brain structural and functional information from different aspects, which have been widely used in brain disease diagnosis, including epilepsy and Alzheimer's disease. In practice, it is difficult to obtain all the modalities of each subject due to high cost or equipment limitation. Therefore, it is highly essential to fuse incomplete multi-modality data to improve the diagnostic accuracy. The traditional methods need to perform data cleansing and discard incomplete subjects from the data, which leads to inefficient training and poor robustness. For addressing this problem, this paper proposes an incomplete multi-modality data fusion method based on low-rank representation for the diagnosis of epilepsy and its subtypes. Specifically, we designed an objective function that simultaneously learns the low-rank representation of the complete modality part, and recovers the incomplete modality by the correlation between different modalities. The proposed model can be optimized by using alternating direction method of multipliers. Extensive evaluation of the proposed method on epilepsy classification task with incomplete DTI and fMRI data showed that our method can achieve promising classification results in identifying epilepsy and its subtypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzm完成签到,获得积分20
刚刚
LHTTT完成签到,获得积分10
2秒前
每天都想发文章完成签到 ,获得积分10
6秒前
10秒前
FashionBoy应助和谐煜祺采纳,获得10
12秒前
小张完成签到 ,获得积分10
18秒前
上官若男应助凡凡的凡凡采纳,获得20
19秒前
0376完成签到,获得积分20
22秒前
25秒前
28秒前
29秒前
思源应助心式虫虫采纳,获得10
31秒前
sefdscse完成签到 ,获得积分10
31秒前
yy发布了新的文献求助10
34秒前
小马甲应助TWD采纳,获得30
34秒前
哈哈哈完成签到 ,获得积分10
41秒前
葛力完成签到,获得积分10
41秒前
Hou完成签到,获得积分10
42秒前
小石榴爸爸完成签到 ,获得积分10
43秒前
咖啡不加冰完成签到,获得积分10
43秒前
48秒前
个性的紫菜应助杰瑞采纳,获得10
51秒前
从容书瑶发布了新的文献求助10
52秒前
月野兔完成签到,获得积分10
52秒前
ding应助窦白梦采纳,获得10
52秒前
54秒前
耍酷的白山完成签到,获得积分10
58秒前
liu66发布了新的文献求助10
58秒前
59秒前
从容书瑶完成签到,获得积分20
1分钟前
英姑应助Shaw采纳,获得10
1分钟前
ARESCI发布了新的文献求助10
1分钟前
1分钟前
tp040900完成签到 ,获得积分10
1分钟前
000完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
turbidwind完成签到 ,获得积分10
1分钟前
1分钟前
疯狂的月亮完成签到 ,获得积分10
1分钟前
高分求助中
The three stars each: the Astrolabes and related texts 1120
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
Revolutions 400
Psychological Warfare Operations at Lower Echelons in the Eighth Army, July 1952 – July 1953 400
宋、元、明、清时期“把/将”字句研究 300
Classroom Discourse Competence 260
我在山東當院長:一位中國大學小官的自白 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2437543
求助须知:如何正确求助?哪些是违规求助? 2117341
关于积分的说明 5375693
捐赠科研通 1845453
什么是DOI,文献DOI怎么找? 918350
版权声明 561712
科研通“疑难数据库(出版商)”最低求助积分说明 491261