亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accurate recognition of object contour based on flexible piezoelectric and piezoresistive dual mode strain sensors

压阻效应 人工智能 计算机视觉 对象(语法) 过程(计算) 机器人 触觉传感器 计算机科学 流离失所(心理学) 材料科学 心理学 光电子学 操作系统 心理治疗师
作者
Zhiqiang Gao,Bing Ren,Zhaozhou Fang,Huiqiang Kang,Jing Han,Jie Li
出处
期刊:Sensors and Actuators A-physical [Elsevier BV]
卷期号:332: 113121-113121 被引量:49
标识
DOI:10.1016/j.sna.2021.113121
摘要

The application of flexible wearable sensors in the grasping process of robot hand can recognize the contour, soft and hard, material, surface temperature and other information of the grasping object, which can effectively improve the intelligent level of the robot. In this work, a method of object contour recognition is proposed by combining the flexible PVDF polymer piezoelectric sensor and high conductivity hydrogel piezoresistive sensor aiming at the problem of profile recognition for objects of the same or similar material. The response of flexible piezoresistive sensor to the static strain is used to sense the angular displacement of robot fingers, and then the shape and size of the object is recognized indirectly. At the same time, the flexible piezoelectric sensor is used as the fingertip tactile sensor to reflect the surface morphology of the object through the dynamic strain information when touching the object. In the whole process of grasping the object, the dual-mode strain information is fully used to realize the recognition of the shape, size and surface morphology of the object. Combining these information, the accurate recognition of the object contour can be further realized. In the experiments, six objects with different shape and four objects with different surface morphology are recognized to verify the feasibility of piezoresistive sensors and piezoelectric sensors respectively. In a comprehensive experiment, eight objects made of the same rubber material with different shape, size and surface morphology are recognized, and the average recognition rate is about 84%, which shows good classification advantages for the objects with similar shape, size and material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nojego完成签到,获得积分10
1秒前
追寻元菱应助顺利的雁梅采纳,获得10
29秒前
Lucas应助Ankzz采纳,获得30
48秒前
1分钟前
四月发布了新的文献求助10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
1分钟前
MRHJ发布了新的文献求助10
1分钟前
小蘑菇应助starry采纳,获得10
1分钟前
1分钟前
1分钟前
MRHJ完成签到,获得积分20
1分钟前
1分钟前
Ankzz发布了新的文献求助30
1分钟前
1分钟前
starry发布了新的文献求助10
2分钟前
Kamalika完成签到,获得积分10
2分钟前
Ankzz完成签到,获得积分10
2分钟前
2分钟前
Hello应助starry采纳,获得30
2分钟前
jingjing发布了新的文献求助10
2分钟前
2分钟前
wzgkeyantong发布了新的文献求助10
2分钟前
wzgkeyantong完成签到,获得积分10
2分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
LU应助Wei采纳,获得10
3分钟前
黑摄会阿Fay完成签到,获得积分10
4分钟前
4分钟前
starry发布了新的文献求助30
4分钟前
YifanWang应助科研通管家采纳,获得20
5分钟前
YifanWang应助科研通管家采纳,获得10
5分钟前
YifanWang应助科研通管家采纳,获得10
5分钟前
红橙黄绿蓝靛紫111完成签到,获得积分10
5分钟前
kuoping完成签到,获得积分0
6分钟前
Wei发布了新的文献求助50
6分钟前
YifanWang应助科研通管家采纳,获得10
7分钟前
YifanWang应助科研通管家采纳,获得10
7分钟前
zsmj23完成签到 ,获得积分0
7分钟前
NexusExplorer应助liudy采纳,获得10
7分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211132
求助须知:如何正确求助?哪些是违规求助? 4387741
关于积分的说明 13663104
捐赠科研通 4247756
什么是DOI,文献DOI怎么找? 2330530
邀请新用户注册赠送积分活动 1328265
关于科研通互助平台的介绍 1281116