亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning‐Guided Design of Pearlitic Steel with Promising Mechanical and Tribological Properties

材料科学 摩擦学 珠光体 磨损(机械) 冶金 分层(地质) 微观结构 磨料 复合材料 俯冲 构造学 生物 奥氏体 古生物学
作者
Ling Qiao,Jingchuan Zhu
出处
期刊:Advanced Engineering Materials [Wiley]
卷期号:23 (12) 被引量:5
标识
DOI:10.1002/adem.202100505
摘要

Herein, attempts have been made to design and develop pearlitic steels for application in heavy‐haul rails. The hardness plays a vital role in studying the mechanical and tribological properties, which is theoretically related to the alloying composition of steel. With aid of machine learning (ML) method, the particle swarm optimization (PSO) improved generalized regression neural network (GRNN) is utilized to model the relationship between composition and hardness of pearlitic steel. The results show that the designed steel exhibits superior hardness and mechanical properties with fine pearlite lamellar microstructure. In addition, the wear behavior of the steel and its wear mechanism are systematically studied by tribological testing and electron probe microanalysis (EPMA) observations of worn surface and wear particles. With composition optimization, the wear resistance has further improved as evidenced by the lower friction coefficient and reduction of wear volume. The pearlitic steels exhibit a combined wear mechanism including adhesive wear, abrasion, delamination, and plastic deformation. As a result, the designed steels offer high hardness with very good mechanical and tribological properties which are far superior to previously reported pearlitic steels. This work may assist in developing the appropriate composition to create the desired hardness, mechanical, and tribological properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助开心泥猴桃采纳,获得10
7秒前
无私萧完成签到,获得积分20
7秒前
Leffzeng完成签到,获得积分10
9秒前
李剑鸿完成签到,获得积分10
13秒前
科研通AI5应助Leffzeng采纳,获得10
13秒前
EasonYao发布了新的文献求助10
17秒前
zho应助李剑鸿采纳,获得10
20秒前
未雨绸缪发布了新的文献求助10
22秒前
赘婿应助www采纳,获得10
22秒前
寒冷麦片发布了新的文献求助10
24秒前
24秒前
周绿真完成签到,获得积分10
27秒前
周绿真发布了新的文献求助10
30秒前
shuang完成签到 ,获得积分10
32秒前
寒冷麦片完成签到,获得积分20
35秒前
39秒前
不去明知山完成签到 ,获得积分10
41秒前
汉堡包应助鲁丁丁采纳,获得10
43秒前
王晓静完成签到 ,获得积分10
43秒前
Leffzeng发布了新的文献求助10
44秒前
54秒前
彭于晏应助科研通管家采纳,获得10
55秒前
科研通AI5应助科研通管家采纳,获得10
55秒前
科研通AI5应助科研通管家采纳,获得30
55秒前
汉堡包应助科研通管家采纳,获得10
55秒前
鲁丁丁发布了新的文献求助10
58秒前
konosuba完成签到,获得积分0
1分钟前
1分钟前
寄草发布了新的文献求助10
1分钟前
科研通AI5应助Little Mianmian采纳,获得20
1分钟前
火火完成签到 ,获得积分10
1分钟前
郝富完成签到,获得积分10
1分钟前
小碗完成签到 ,获得积分10
1分钟前
幻想家姬别情完成签到,获得积分10
1分钟前
寄草完成签到,获得积分10
1分钟前
活力的冷雪完成签到 ,获得积分10
1分钟前
Calyn完成签到 ,获得积分10
1分钟前
1分钟前
小明发布了新的文献求助10
1分钟前
杰帅完成签到,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792399
求助须知:如何正确求助?哪些是违规求助? 3336688
关于积分的说明 10281848
捐赠科研通 3053424
什么是DOI,文献DOI怎么找? 1675608
邀请新用户注册赠送积分活动 803581
科研通“疑难数据库(出版商)”最低求助积分说明 761468