BSEResU-Net: An attention-based before-activation residual U-Net for retinal vessel segmentation

计算机科学 分割 残余物 交叉熵 人工智能 卷积神经网络 编码器 深度学习 块(置换群论) 模式识别(心理学) 激活函数 算法 人工神经网络 数学 几何学 操作系统
作者
Di Li,Susanto Rahardja
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:205: 106070-106070 被引量:47
标识
DOI:10.1016/j.cmpb.2021.106070
摘要

Retinal vessels are a major feature used for the physician to diagnose many retinal diseases, such as cardiovascular disease and Glaucoma. Therefore, the designing of an auto-segmentation algorithm for retinal vessel draw great attention in medical field. Recently, deep learning methods, especially convolutional neural networks (CNNs) show extraordinary potential for the task of vessel segmentation. However, most of the deep learning methods only take advantage of the shallow networks with a traditional cross-entropy objective, which becomes the main obstacle to further improve the performance on a task that is imbalanced. We therefore propose a new type of residual U-Net called Before-activation Squeeze-and-Excitation ResU-Net (BSEResu-Net) to tackle the aforementioned issues. Our BSEResU-Net can be viewed as an encoder/decoder framework that constructed by Before-activation Squeeze-and-Excitation blocks (BSE Blocks). In comparison to the current existing CNN structures, we utilize a new type of residual block structure, namely BSE block, in which the attention mechanism is combined with skip connection to boost the performance. What's more, the network could consistently gain accuracy from the increasing depth as we incorporate more residual blocks, attributing to the dropblock mechanism used in BSE blocks. A joint loss function which is based on the dice and cross-entropy loss functions is also introduced to achieve more balanced segmentation between the vessel and non-vessel pixels. The proposed BSEResU-Net is evaluated on the publicly available DRIVE, STARE and HRF datasets. It achieves the F1-score of 0.8324, 0.8368 and 0.8237 on DRIVE, STARE and HRF dataset, respectively. Experimental results show that the proposed BSEResU-Net outperforms current state-of-the-art algorithms. The proposed algorithm utilizes a new type of residual blocks called BSE residual blocks for vessel segmentation. Together with a joint loss function, it shows outstanding performance both on low and high-resolution fundus images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
wuyanzu发布了新的文献求助20
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
刚刚
华仔应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI2S应助科研通管家采纳,获得30
刚刚
张千鸿发布了新的文献求助10
1秒前
带象完成签到,获得积分10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
1秒前
卡卡东完成签到 ,获得积分10
2秒前
笑一笑完成签到,获得积分10
2秒前
3秒前
IP190237完成签到,获得积分0
5秒前
5秒前
猪猪hero发布了新的文献求助10
5秒前
852应助快乐小子采纳,获得10
6秒前
luoshikun发布了新的文献求助10
6秒前
7秒前
8秒前
柒z发布了新的文献求助10
8秒前
隐形的杨完成签到 ,获得积分10
8秒前
9秒前
9秒前
tdchange完成签到,获得积分10
9秒前
SciGPT应助你好采纳,获得10
10秒前
Stroeve完成签到,获得积分10
11秒前
重要的小蝴蝶完成签到,获得积分10
11秒前
不动游星发布了新的文献求助10
12秒前
SciGPT应助若见夏采纳,获得10
12秒前
13秒前
14秒前
奋斗者完成签到,获得积分10
14秒前
科研通AI5应助luoshikun采纳,获得10
15秒前
彭于晏应助TomHolland采纳,获得10
16秒前
16秒前
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793379
求助须知:如何正确求助?哪些是违规求助? 3338237
关于积分的说明 10289128
捐赠科研通 3054737
什么是DOI,文献DOI怎么找? 1676158
邀请新用户注册赠送积分活动 804208
科研通“疑难数据库(出版商)”最低求助积分说明 761760