加速
拓扑优化
数学优化
水平集方法
趋同(经济学)
计算机科学
水平集(数据结构)
功能(生物学)
集合(抽象数据类型)
拓扑(电路)
贝尔曼方程
加速度
数学
领域(数学)
并行计算
有限元法
物理
经典力学
经济增长
进化生物学
图像分割
人工智能
经济
组合数学
热力学
分割
程序设计语言
纯数学
生物
作者
Yoshifumi Okamoto,Hiroshi Masuda,Yutaro Kanda,Reona Hoshino,Shinji Wakao
出处
期刊:Compel-the International Journal for Computation and Mathematics in Electrical and Electronic Engineering
[Emerald Publishing Limited]
日期:2018-01-22
卷期号:37 (2): 630-644
被引量:7
标识
DOI:10.1108/compel-12-2016-0528
摘要
Purpose The purpose of this paper is the improvement of topology optimization. The scope of the paper is focused on the speedup of optimization. Design/methodology/approach To achieve the speedup, the method of moving asymptotes (MMA) with constrained condition of level set function is applied instead of solving the Hamilton–Jacobi equation. Findings The acceleration of convergence of objective function is drastically improved by the implementation of MMA. Originality/value Normally, the level set method is solved through the Hamilton–Jacobi equation. However, the possibility of introducing mathematical programming is clear by the constrained condition. Furthermore, the proposed method is suitable for efficiently solving the topology optimization problem in the magnetic field system.
科研通智能强力驱动
Strongly Powered by AbleSci AI