Foundation pit displacement monitoring and prediction using least squares support vector machines based on multi-point measurement

支持向量机 最小二乘支持向量机 流离失所(心理学) 最小二乘函数近似 过程(计算) 相关向量机 算法 点(几何) 计算机科学 机器学习 人工智能 结构化支持向量机 数据挖掘 数学 统计 心理学 几何学 估计员 心理治疗师 操作系统
作者
Xiao Li,Xin Liu,Clyde Zhengdao Li,Zhumin Hu,Qiping Shen,Zhenyu Huang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:18 (3): 715-724 被引量:42
标识
DOI:10.1177/1475921718767935
摘要

Foundation pit displacement is a critical safety risk for both building structure and people lives. The accurate displacement monitoring and prediction of a deep foundation pit are essential to prevent potential risks at early construction stage. To achieve accurate prediction, machine learning methods are extensively applied to fulfill this purpose. However, these approaches, such as support vector machines, have limitations in terms of data processing efficiency and prediction accuracy. As an emerging approach derived from support vector machines, least squares support vector machine improve the data processing efficiency through better use of equality constraints in the least squares loss functions. However, the accuracy of this approach highly relies on the large volume of influencing factors from the measurement of adjacent critical points, which is not normally available during the construction process. To address this issue, this study proposes an improved least squares support vector machine algorithm based on multi-point measuring techniques, namely, multi-point least squares support vector machine. To evaluate the effectiveness of the proposed multi-point least squares support vector machine approach, a real case study project was selected, and the results illustrated that the multi-point least squares support vector machine approach on average outperformed single-point least squares support vector machine in terms of prediction accuracy during the foundation pit monitoring and prediction process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳的颤完成签到 ,获得积分10
4秒前
万灵竹完成签到 ,获得积分10
9秒前
11秒前
baoxiaozhai完成签到 ,获得积分10
16秒前
16秒前
李新光完成签到 ,获得积分10
20秒前
21秒前
25秒前
小白兔完成签到 ,获得积分10
26秒前
hdc12138完成签到,获得积分10
27秒前
无为完成签到 ,获得积分10
30秒前
yy完成签到 ,获得积分10
34秒前
38秒前
39秒前
慕青应助CHEN采纳,获得10
46秒前
48秒前
48秒前
巴啦啦小魔仙完成签到 ,获得积分10
49秒前
52秒前
52秒前
wyt1239012发布了新的文献求助10
54秒前
56秒前
CHEN发布了新的文献求助10
58秒前
霁昕完成签到 ,获得积分10
58秒前
zhilianghui0807完成签到 ,获得积分10
58秒前
CGBY完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
CL完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
段远凯发布了新的文献求助50
1分钟前
CHEN完成签到,获得积分10
1分钟前
1分钟前
大明完成签到 ,获得积分10
1分钟前
1分钟前
ira发布了新的文献求助10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777640
求助须知:如何正确求助?哪些是违规求助? 3323099
关于积分的说明 10212929
捐赠科研通 3038447
什么是DOI,文献DOI怎么找? 1667372
邀请新用户注册赠送积分活动 798115
科研通“疑难数据库(出版商)”最低求助积分说明 758237