避障
移动机器人
机器人
计算机科学
模糊逻辑
运动规划
避碰
基于行为的机器人学
人工智能
移动机器人导航
机器人控制
障碍物
控制工程
模拟
工程类
计算机安全
碰撞
法学
政治学
作者
Amir Nasrinahar,Joon Huang Chuah
标识
DOI:10.1007/s41604-018-0007-4
摘要
Intelligent navigation in cluttered environment while insuring maximum safety and task efficiency is a challenging subject. Motion planning is an important issue in the field of autonomous mobile robots which makes them capable to travel from one position to another in various environments including both static and dynamic obstacles without any human intervention. This research is conducted for the purpose of designing and programming a mobile robot using two separated fuzzy logic controllers to develop an intelligent algorithm in order to avoid both static and dynamic obstacles. These fuzzy logic controllers play a significant role in mobile robot navigation and obstacle avoidance behavior. In this work, four essential behavior controllers are designed and implemented onto the robot to assist its navigation towards the goal which are: goal reaching behavior, speed control behavior, goal searching behavior and obstacle avoidance behavior. The obstacle avoidance behavior is divided into two individual behaviors which are static obstacle avoidance behavior and dynamic obstacle avoidance behavior where these behaviors are controlled by an artificial intelligence (AI) algorithm. In order to design obstacle avoidance behavior, Sugeno fuzzy logic was applied. The simulation of this research was done by MATLAB software where a mobile robot and some experimental environments with different complexity were created. Several navigation tests were conducted and the robot's behavior were observed as well. Analysis of the robot's performance validated the effectiveness of the proposed controllers and the robot could successfully navigate to reach the goal through all experimental environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI