Exploiting single-cell RNA sequencing data to link alternative splicing and cancer heterogeneity: A computational approach

选择性拼接 RNA剪接 计算生物学 生物 基因亚型 基因 乳腺癌 基因表达 核糖核酸 遗传学 癌症
作者
Ichcha Manipur,Ilaria Granata,Mario Rosario Guarracino
出处
期刊:The International Journal of Biochemistry & Cell Biology [Elsevier BV]
卷期号:108: 51-60 被引量:8
标识
DOI:10.1016/j.biocel.2018.12.015
摘要

Cell heterogeneity studies using single-cell sequencing are gaining great significance in the era of personalized medicine. In particular, characterization of tumor heterogeneity is an emergent issue to improve clinical oncology, since both inter- and intra-tumor level heterogeneity influence the utility and application of molecular classifications through specific biomarkers. Majority of studies have exploited gene expression to discriminate cell types. However, to provide a more nuanced view of the underlying differences, isoform expression and alternative splicing events have to be analyzed in detail. In this study, we utilize publicly available single cell and bulk RNA sequencing datasets of breast cancer cells from primary tumors and immortalized cell lines. Breast cancer is very heterogeneous with well defined molecular subtypes and was therefore chosen for this study. RNA-seq data were explored in terms of genes, isoforms abundance and splicing events. The study was conducted from an average based approach (gene level expression) to detailed and deeper ones (isoforms abundance/splicing events) to perform a comparative analysis, and, thus, highlight the importance of the splicing machinery in defining the tumor heterogeneity. Moreover, here we demonstrate how the investigation of gene isoforms expression can help to identify the appropriate in vitro models. We furthermore extracted marker isoforms, and alternatively spliced genes between and within the different single cell populations to improve the classification of the breast cancer subtypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yyds发布了新的文献求助10
1秒前
gg发布了新的文献求助10
1秒前
我将以疾风形态出击完成签到,获得积分10
1秒前
动听隶完成签到,获得积分10
1秒前
杨枝甘露完成签到,获得积分20
3秒前
天天快乐应助ninghan采纳,获得10
3秒前
3秒前
3秒前
ayan完成签到,获得积分10
3秒前
果实发布了新的文献求助10
4秒前
Ling发布了新的文献求助10
4秒前
王靖雯发布了新的文献求助10
4秒前
ding应助张一二二二采纳,获得10
4秒前
4秒前
5秒前
5秒前
科研通AI6应助BaoGGG采纳,获得10
5秒前
wyg发布了新的文献求助10
5秒前
fyc完成签到,获得积分10
5秒前
酷波er应助动听的小虾米采纳,获得10
6秒前
早安完成签到,获得积分10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
人文发布了新的文献求助10
6秒前
领导范儿应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
上官若男应助sanages采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
Koalas应助科研通管家采纳,获得20
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
无花果应助柴ZL采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
MARCH'S ADVANCED ORGANIC CHEMISTRY REACTIONS, MECHANISMS, AND STRUCTURE 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5084739
求助须知:如何正确求助?哪些是违规求助? 4301409
关于积分的说明 13402836
捐赠科研通 4125884
什么是DOI,文献DOI怎么找? 2259651
邀请新用户注册赠送积分活动 1263833
关于科研通互助平台的介绍 1197976