Marginal singularity and the benefits of labels in covariate-shift

协变量 极小极大 数学 非参数统计 边际分布 传输(计算) 样本量测定 分布(数学) 学习迁移 分类器(UML) 联合概率分布 概率分布 统计 样品(材料) 计量经济学 人工智能 计算机科学 数学优化 随机变量 数学分析 色谱法 并行计算 化学
作者
Samory Kpotufe,Guillaume Martinet
出处
期刊:Annals of Statistics [Institute of Mathematical Statistics]
卷期号:49 (6) 被引量:17
标识
DOI:10.1214/21-aos2084
摘要

Transfer Learning addresses common situations in Machine Leaning where little or no labeled data is available for a target prediction problem—corresponding to a distribution Q, but much labeled data is available from some related but different data distribution P. This work is concerned with the fundamental limits of transfer, that is, the limits in target performance in terms of (1) sample sizes from P and Q, and (2) differences in data distributions P, Q. In particular, we aim to address practical questions such as how much target data from Q is sufficient given a certain amount of related data from P, and how to optimally sample such target data for labeling. We present new minimax results for transfer in nonparametric classification (i.e., for situations where little is known about the target classifier), under the common assumption that the marginal distributions of covariates differ between P and Q (often termed covariate-shift). Our results are first to concisely capture the relative benefits of source and target labeled data in these settings through information-theoretic limits. Namely, we show that the benefits of target labels are tightly controlled by a transfer-exponent γ that encodes how singular Q is locally with respect to P, and interestingly paints a more favorable picture of transfer than what might be believed from insights from previous work. In fact, while previous work rely largely on refinements of traditional metrics and divergences between distributions, and often only yield a coarse view of when transfer is possible or not, our analysis—in terms of γ—reveals a continuum of new regimes ranging from easy to hard transfer. We then address the practical question of how to efficiently sample target data to label, by showing that a recently proposed semi-supervised procedure—based on k-NN classification, can be refined to adapt to unknown γ and, therefore, requests target labels only when beneficial, while achieving nearly minimax-optimal transfer rates without knowledge of distributional parameters. Of independent interest, we obtain new minimax-optimality results for vanilla k-NN classification in regimes with nonuniform marginals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助要懒死了hhh采纳,获得10
1秒前
1秒前
pluto应助Parsifal采纳,获得50
2秒前
HK完成签到 ,获得积分10
2秒前
si发布了新的文献求助10
4秒前
5秒前
7秒前
南风关注了科研通微信公众号
7秒前
13发布了新的文献求助10
11秒前
xubee完成签到,获得积分10
15秒前
迪迦奥特曼完成签到,获得积分10
18秒前
zhentg完成签到,获得积分0
22秒前
Bin_Liu发布了新的文献求助10
24秒前
流体离子发电机完成签到,获得积分10
29秒前
30秒前
32秒前
32秒前
忧心的舞仙完成签到 ,获得积分10
33秒前
聪慧芷巧发布了新的文献求助10
34秒前
虚心的阿松完成签到,获得积分10
35秒前
FashionBoy应助yan采纳,获得10
37秒前
Misea发布了新的文献求助10
38秒前
南风发布了新的文献求助10
39秒前
41秒前
Qingqing完成签到,获得积分10
45秒前
胖头鱼666发布了新的文献求助10
45秒前
pluto应助岛err采纳,获得10
45秒前
45秒前
怕孤独的访云完成签到 ,获得积分10
47秒前
dfghjkl发布了新的文献求助10
47秒前
48秒前
51秒前
张小星完成签到,获得积分10
51秒前
殷超发布了新的文献求助10
51秒前
听风完成签到,获得积分10
52秒前
53秒前
咖啡豆完成签到 ,获得积分10
56秒前
谁家那小谁完成签到,获得积分10
56秒前
58秒前
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779725
求助须知:如何正确求助?哪些是违规求助? 3325161
关于积分的说明 10221629
捐赠科研通 3040254
什么是DOI,文献DOI怎么找? 1668703
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758535