Potential of UAV photogrammetry for characterization of forest canopy structure in uneven-aged mixed conifer–broadleaf forests

天蓬 环境科学 树冠 森林结构 摄影测量学 遥感 林业 生态学 地理 生物
作者
Sadeepa Jayathunga,Toshiaki Owari,Satoshi Tsuyuki,Yasumasa Hirata
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:41 (1): 53-73 被引量:24
标识
DOI:10.1080/01431161.2019.1648900
摘要

Forest canopy structure is an important parameter in multipurpose forest management. An understanding of forest structure plays a particularly important role in the management of uneven-aged forests. The identification of vertical and horizontal variations in forest canopy structure using a ground-based survey is resource intensive, hence often demands for alternative data sources. In this study, one of the advanced remote sensing (RS) techniques, i.e. digital aerial photogrammetry was used to characterize forest canopy structure in a mixed conifer–broadleaf forest. We used aerial imagery acquired with a fixed-wing unmanned aerial vehicle (UAV) platform to produce RS metrics that could be used to classify and map forest structure types at landscape scale. Our results demonstrated that few structural and spectral metrics derived from UAV photogrammetric data, e.g. mean height, standard deviation of height, canopy cover, and percentage broadleaf vegetation cover, could characterize the forest structure across landscapes, particularly at the forest management compartment level, in a limited amount of time. We used cluster analysis for classification of forest structure types and identified five forest structure classes with varying levels of forest canopy structural complexity: (1) short, open-canopy, conifer-dominated structure; (2) short, dense-canopy, broadleaf-dominated structure; (3) tall, closed-canopy, broadleaf-dominated structure; (4) very tall, closed-canopy, conifer-dominated structure with a relatively high degree of variation in canopy height; and (5) very tall, closed-canopy, conifer-dominated structure with a relatively low degree of variation in canopy height. These classes showed relationships with forest management activities (e.g. selection harvesting) and natural disturbances (e.g. typhoon damage). Spatial distribution of forest canopy structural complexity that was revealed in this study is capable of providing important information for forest management planning and habitat modelling. Further, the simple, and flexible data-driven method used in this study to characterize forest structure has the potential to be applied with necessary changes over larger landscapes and different forest types for characterizing and mapping forest structural complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助123123采纳,获得10
刚刚
科研通AI6应助123123采纳,获得10
1秒前
啦啦啦应助123123采纳,获得10
1秒前
浮游应助123123采纳,获得10
1秒前
科研通AI6应助123123采纳,获得10
1秒前
科研通AI2S应助123123采纳,获得30
1秒前
wuliqun应助123123采纳,获得10
1秒前
2秒前
2秒前
Zx_1993完成签到,获得积分0
2秒前
丘比特应助西瓜采纳,获得10
3秒前
3秒前
3秒前
健忘的访文完成签到,获得积分10
3秒前
3秒前
haijun发布了新的文献求助10
3秒前
嘿嘿嘿发布了新的文献求助20
4秒前
6秒前
7秒前
S.发布了新的文献求助10
7秒前
李爱国应助高贵的思山采纳,获得10
8秒前
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
xxfsx应助科研通管家采纳,获得10
9秒前
9秒前
英姑应助科研通管家采纳,获得10
9秒前
9秒前
小青椒应助科研通管家采纳,获得40
9秒前
9秒前
MZH发布了新的文献求助10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
10秒前
白鸽鸽发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
星落枝头发布了新的文献求助10
10秒前
科目三应助陈皮有远志采纳,获得30
11秒前
开心牛油果完成签到,获得积分10
11秒前
清爽的胡萝卜完成签到 ,获得积分10
11秒前
汉堡包应助等待的道消采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436430
求助须知:如何正确求助?哪些是违规求助? 4548467
关于积分的说明 14214403
捐赠科研通 4468775
什么是DOI,文献DOI怎么找? 2449157
邀请新用户注册赠送积分活动 1440092
关于科研通互助平台的介绍 1416668