A Novel Rolling Bearing Fault Diagnosis Method Based on Empirical Wavelet Transform and Spectral Trend

小波 包络线(雷达) 小波变换 滤波器(信号处理) 算法 断层(地质) 分割 平稳小波变换 小波包分解 波形 数学 过滤器组 模式识别(心理学) 计算机科学 人工智能 计算机视觉 电信 地震学 地质学 雷达
作者
Yonggang Xu,Yunjie Deng,Jiyuan Zhao,Weikang Tian,Chaoyong Ma
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:69 (6): 2891-2904 被引量:61
标识
DOI:10.1109/tim.2019.2928534
摘要

Empirical wavelet transform (EWT) is a new adaptive signal decomposition method based on wavelet theory, the main idea is to establish an appropriate set of empirical wavelet filter banks for adaptive signal decomposition. EWT has been demonstrated its effectiveness in some applications. However, the unreasonable spectrum segmentation will lead to the emergence of many invalid components. In this paper, a novel spectral segmentation method is proposed to improve the drawback of EWT in boundary division. The proposed method takes into account the waveform of the spectrum itself. First, different spectral trends are obtained by iteratively calculating the mean of the upper envelope function and the lower envelope function of the spectrum. Then, the most appropriate one is got according to the criterion and the spectrum segmentation is achieved by detecting the local minimum of the trend. Finally, empirical modes are obtained by a set of bandpass filters. The effectiveness and efficiency of the method are verified by two simulation signals. Finally, the proposed method is applied to fault diagnosis of the inner and outer race of rolling bearings, respectively. The results indicate that the method can accurately and effectively identify fault information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
yzz发布了新的文献求助30
3秒前
华仔应助xixi采纳,获得30
6秒前
6秒前
7秒前
8秒前
科研通AI5应助liyuanhua采纳,获得10
10秒前
Shaangueuropa完成签到,获得积分20
10秒前
斯文败类应助Joeswith采纳,获得10
10秒前
Lliy发布了新的文献求助10
11秒前
Heart完成签到,获得积分20
12秒前
xin完成签到 ,获得积分10
12秒前
粗暴的乐巧完成签到,获得积分10
13秒前
芥楠完成签到,获得积分10
14秒前
15秒前
上官若男应助LHW采纳,获得10
15秒前
情怀应助DownTAT采纳,获得10
15秒前
15秒前
qing1245完成签到,获得积分10
15秒前
小李发布了新的文献求助10
15秒前
羽翼发布了新的文献求助10
16秒前
潇湘夜雨完成签到,获得积分10
16秒前
17秒前
两米七完成签到 ,获得积分10
17秒前
18秒前
lrw发布了新的文献求助30
18秒前
18秒前
果果发布了新的文献求助10
18秒前
Lucifer完成签到,获得积分10
19秒前
xixi完成签到,获得积分10
20秒前
可爱的函函应助羽翼采纳,获得10
22秒前
Zirong发布了新的文献求助10
22秒前
22秒前
简单的梦菡完成签到,获得积分20
22秒前
xixi发布了新的文献求助30
23秒前
lcx发布了新的文献求助10
23秒前
莫西莫西完成签到,获得积分20
23秒前
FashionBoy应助虎虎采纳,获得20
24秒前
25秒前
25秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835093
求助须知:如何正确求助?哪些是违规求助? 3377591
关于积分的说明 10499375
捐赠科研通 3097098
什么是DOI,文献DOI怎么找? 1705488
邀请新用户注册赠送积分活动 820613
科研通“疑难数据库(出版商)”最低求助积分说明 772142