已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Toward more realistic drug-target interaction predictions

标杆管理 计算机科学 药物靶点 二元分类 机器学习 集合(抽象数据类型) 人工智能 试验装置 二进制数 数据挖掘 药物发现 计算生物学 支持向量机 生物信息学 药理学 数学 生物 营销 业务 算术 程序设计语言
作者
Tapio Pahikkala,Antti Airola,Samuli Pietilä,Sushil Kumar Shakyawar,Agnieszka Szwajda,Jing Tang,Tero Aittokallio
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:16 (2): 325-337 被引量:455
标识
DOI:10.1093/bib/bbu010
摘要

A number of supervised machine learning models have recently been introduced for the prediction of drug ^target interactions based on chemical structure and genomic sequence information.Although these models could offer improved means for many network pharmacology applications, such as repositioning of drugs for new therapeutic uses, the prediction models are often being constructed and evaluated under overly simplified settings that do not reflect the real-life problem in practical applications.Using quantitative drug ^target bioactivity assays for kinase inhibitors, as well as a popular benchmarking data set of binary drug ^target interactions for enzyme, ion channel, nuclear receptor and G protein-coupled receptor targets, we illustrate here the effects of four factors that may lead to dramatic differences in the prediction results: (i) problem formulation (standard binary classification or more realistic regression formulation), (ii) evaluation data set (drug and target families in the application use case), (iii) evaluation procedure (simple or nested cross-validation) and (iv) experimental setting (whether training and test sets share common drugs and targets, only drugs or targets or neither).Each of these factors should be taken into consideration to avoid reporting overoptimistic drug ^target interaction prediction results.We also suggest guidelines on how to make the supervised drug ^target interaction prediction studies more realistic in terms of such model formulations and evaluation setups that better address the inherent complexity of the prediction task in the practical applications, as well as novel benchmarking data sets that capture the continuous nature of the drug ^target interactions for kinase inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊逸易槐发布了新的文献求助10
刚刚
刚刚
蟒玉朝天发布了新的文献求助10
2秒前
自然的行恶完成签到 ,获得积分10
2秒前
xk发布了新的文献求助10
4秒前
zyz完成签到 ,获得积分10
4秒前
4秒前
橘生淮南发布了新的文献求助10
6秒前
7秒前
Joeson发布了新的文献求助10
8秒前
10秒前
CodeCraft应助RR采纳,获得10
12秒前
Criminology34举报镁铝硅磷求助涉嫌违规
13秒前
科研通AI6应助Joeson采纳,获得10
13秒前
14秒前
汉堡包应助xk采纳,获得10
14秒前
思源应助zzzrx采纳,获得10
15秒前
Akim应助温暖火采纳,获得10
15秒前
无奈的盼望完成签到 ,获得积分10
15秒前
16秒前
17秒前
永远完成签到,获得积分10
17秒前
jie完成签到,获得积分10
18秒前
李健的小迷弟应助鸠摩智采纳,获得10
18秒前
搜集达人应助咩咩采纳,获得10
19秒前
21秒前
FashionBoy应助zhang采纳,获得10
22秒前
顺利又菱完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
XL发布了新的文献求助10
24秒前
北斗完成签到,获得积分10
24秒前
25秒前
顺利又菱发布了新的文献求助10
25秒前
温暖火发布了新的文献求助10
25秒前
Sophie完成签到,获得积分20
26秒前
医道无名发布了新的文献求助10
28秒前
酷波er应助开心市民小刘采纳,获得10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5029771
求助须知:如何正确求助?哪些是违规求助? 4265170
关于积分的说明 13296921
捐赠科研通 4073698
什么是DOI,文献DOI怎么找? 2228111
邀请新用户注册赠送积分活动 1236711
关于科研通互助平台的介绍 1160948