The Functional Anatomy of Rice Leaves: Implications for Refixation of Photorespiratory CO2 and Efforts to Engineer C4 Photosynthesis into Rice

叶绿体 光合作用 淀粉体 胞间连丝 植物 生物 维管束 光呼吸 类囊体 质体 生物物理学 超微结构 生物化学 基因
作者
Tammy L. Sage,Rowan F. Sage
出处
期刊:Plant and Cell Physiology [Oxford University Press]
卷期号:50 (4): 756-772 被引量:199
标识
DOI:10.1093/pcp/pcp033
摘要

One mechanism to enhance global food stocks radically is to introduce C4 photosynthesis into C3 crops from warm climates, notably rice. To accomplish this, an understanding of leaf structure and function is essential. The chlorenchyma structure of rice and related warm-climate C3 grasses is distinct from that of cool temperate C3 grasses. In temperate C3 grasses, vacuoles occupy the majority of the cell, while chloroplasts, peroxisomes and mitochondria are pressed against the cell periphery. In rice, 66% of protoplast volume is occupied by chloroplasts, and chloroplasts/stromules cover >95% of the cell periphery. Mitochondria and peroxisomes occur in the cell interior and are intimately associated with chloroplasts/stromules. We hypothesize that the chlorenchyma architecture of rice enhances diffusive CO(2) conductance and maximizes scavenging of photorespired CO2. The extensive chloroplast/stromule sheath forces photorespired CO(2) to exit cells via the stroma, where it can be refixed by Rubisco. Deep cell lobing and small cell size, coupled with chloroplast sheaths, creates high surface area exposure of stroma to intercellular spaces, thereby enhancing mesophyll transfer conductance. In support of this, rice exhibits higher mesophyll transfer conductance, greater stromal CO2 content, lower CO2 compensation points at warm temperature and less oxygen sensitivity of photosynthesis than cool temperate grasses. Rice vein length per leaf, mesophyll thickness and intercellular space volume are intermediate between those of most C3 and C4 grasses, indicating that the introduction of Kranz anatomy into rice may not require radical changes in leaf anatomy; however, deep lobing of chlorenchyma cells may constrain efforts to engineer C4 photosynthesis into rice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx发布了新的文献求助10
1秒前
1秒前
健壮纸鹤完成签到,获得积分10
2秒前
2秒前
2秒前
NexusExplorer应助xixi采纳,获得10
4秒前
4秒前
灯灯完成签到,获得积分10
5秒前
Hey发布了新的文献求助10
5秒前
大个应助科研通管家采纳,获得10
6秒前
123456完成签到,获得积分10
6秒前
冰魂应助科研通管家采纳,获得10
6秒前
mmyhn应助科研通管家采纳,获得20
6秒前
科研通AI5应助Aspirin采纳,获得10
6秒前
7秒前
落后师应助科研通管家采纳,获得10
7秒前
星星亮应助科研通管家采纳,获得10
7秒前
7秒前
易贺完成签到,获得积分10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
小朱应助科研通管家采纳,获得10
7秒前
852应助彩色青亦采纳,获得20
7秒前
木心儿吖应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
落后师应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
失眠醉易应助科研通管家采纳,获得20
8秒前
Akim应助淡淡夕阳采纳,获得10
8秒前
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
8秒前
liwenhao123发布了新的文献求助20
9秒前
zho发布了新的文献求助10
10秒前
xx完成签到,获得积分10
10秒前
震动的凌丝完成签到,获得积分10
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817682
求助须知:如何正确求助?哪些是违规求助? 3360954
关于积分的说明 10410402
捐赠科研通 3079042
什么是DOI,文献DOI怎么找? 1690956
邀请新用户注册赠送积分活动 814272
科研通“疑难数据库(出版商)”最低求助积分说明 768068