套管
心室
心室辅助装置
涡流
血栓
流动可视化
材料科学
舒张期
医学
心脏病学
流量(数学)
生物医学工程
内科学
机械
外科
心力衰竭
物理
血压
作者
Karen May‐Newman,Juyeun Moon,Varsha Ramesh,Ricardo Graña‐Montes,Josue Campos,B Herold,Paul Isingoma,Tadashi Motomura,Robert Benkowski
出处
期刊:Asaio Journal
[Lippincott Williams & Wilkins]
日期:2017-03-23
卷期号:63 (5): 592-603
被引量:24
标识
DOI:10.1097/mat.0000000000000559
摘要
Left ventricular assist device (LVAD) inflow cannula malposition is a significant risk for pump thrombosis. Thrombus development is influenced by altered flow dynamics, such as stasis or high shear that promote coagulation. The goal of this study was to measure the intraventricular flow field surrounding the apical inflow cannula of the Evaheart centrifugal LVAD, and assess flow stasis, vortex structures, and pulsatility for a range of cannula insertion depths and support conditions. Experimental studies were performed using a mock loop with a customized silicone left ventricle (LV) and the Evaheart LVAD. A transparent inflow cannula was positioned at 1, 2, or 3 cm insertion depth into the LV and the velocity field in the LV midplane was measured for 2 levels of LVAD support: 1800 and 2300 rpm. The LV velocity field exhibits a diastolic vortex ring whose size, path, and strength are affected by the flow conditions and cannula position. During diastole, the large clockwise midplane vortex grows, but its circulation and kinetic energy are reduced with cannula insertion depth. The counterclockwise vortex is smaller and exhibits more complex behavior, reflecting a flow split at 3 cm. Overall, the 1 cm cannula insertion depth produces the flow pattern that exhibits the least apical flow stasis and greatest pulsatility and should correlate to a lower risk of thrombus formation.
科研通智能强力驱动
Strongly Powered by AbleSci AI