Performance Improvement of Handheld Raman Spectrometer for Mixture Components Identification Using Fuzzy Membership and Sparse Non-Negative Least Squares

拉曼光谱 分光计 半最大全宽 分析化学(期刊) 特征(语言学) 主成分分析 指纹(计算) 偏最小二乘回归 移动设备 混合模型 模糊逻辑 材料科学 化学 光学 人工智能 色谱法 计算机科学 光电子学 数学 统计 物理 语言学 哲学 操作系统
作者
Xin Zhao,Caizheng Liu,Ziyan Zhao,Qibing Zhu,Min Huang
出处
期刊:Applied Spectroscopy [SAGE Publishing]
卷期号:76 (5): 548-558 被引量:7
标识
DOI:10.1177/00037028221080205
摘要

Due to the advantages of low price and convenience for end-users to conduct field-based, in-situ analysis, handheld Raman spectrometers are widely used in the identification of mixture components. However, the spectra collected by handheld Raman spectrometer usually have serious peak overlapping and spectral distortion, resulting in difficulties in component identification in the mixture. A novel method for mixture components identification based on the handheld Raman spectrometer was proposed in this study. The wavelet transform and Voight curve fitting method were used to extract the feature parameters from each Raman spectral peak, including Raman shift, maximum intensity, and full width at half-maximum (FWHM), and the similarities between the mixture and each substance in the database were calculated by fuzzy membership function based on extracted feature parameters. Then, the possible substances in the mixture were preliminarily screened out as candidates according to the similarity. Finally, the Raman spectra of these candidates were used to fit the spectra of the mixture, and the fitting coefficients obtained by sparse non-negative least squares algorithm were employed to further determine the suspected substance in the mixture. The Raman spectra of 190 liquid mixture samples and 158 powder mixture samples were collected using a handheld Raman spectrometer and these spectra were used to validate the identification performance of the proposed method. The proposed method could achieve good identification accuracy for different mixture samples. It shows that the proposed method is an effective way for the component identification in mixture by using a handheld Raman spectrometer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
DaDA完成签到 ,获得积分10
3秒前
平淡纸飞机完成签到 ,获得积分10
3秒前
剑圣不会斩完成签到,获得积分10
4秒前
Youlu发布了新的文献求助10
5秒前
cai完成签到 ,获得积分10
5秒前
英俊的铭应助追寻梦之采纳,获得30
5秒前
QYY完成签到,获得积分10
6秒前
Kamal完成签到,获得积分10
7秒前
光崽是谁完成签到,获得积分10
8秒前
一白完成签到 ,获得积分10
8秒前
英俊的铭应助Youlu采纳,获得10
9秒前
Microbiota完成签到,获得积分10
11秒前
南北完成签到,获得积分10
12秒前
小许完成签到 ,获得积分10
15秒前
南宫丽完成签到 ,获得积分10
15秒前
zz完成签到,获得积分10
15秒前
文献求助完成签到,获得积分10
15秒前
wxxz完成签到,获得积分10
18秒前
cdercder应助科研通管家采纳,获得10
19秒前
cdercder应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
小九完成签到,获得积分10
20秒前
火星上的泡芙完成签到,获得积分10
21秒前
我就想看看文献完成签到 ,获得积分10
23秒前
26秒前
青青河边草完成签到 ,获得积分10
32秒前
晚晚完成签到,获得积分10
33秒前
Tin完成签到,获得积分10
33秒前
35秒前
luoqin完成签到 ,获得积分10
37秒前
42秒前
老迟到的土豆完成签到 ,获得积分10
46秒前
zxx完成签到 ,获得积分10
49秒前
chen同学完成签到 ,获得积分10
49秒前
50秒前
52秒前
xmhxpz发布了新的文献求助10
53秒前
59秒前
111完成签到,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833944
求助须知:如何正确求助?哪些是违规求助? 3376373
关于积分的说明 10492766
捐赠科研通 3095877
什么是DOI,文献DOI怎么找? 1704767
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859