MSANet: Multiscale Aggregation Network Integrating Spatial and Channel Information for Lung Nodule Detection

计算机科学 假阳性悖论 特征提取 模式识别(心理学) 特征(语言学) 人工智能 结核(地质) 排名(信息检索) 数据挖掘 语言学 生物 哲学 古生物学
作者
Zhitao Guo,Linlin Zhao,Jinli Yuan,Hengyong Yu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (6): 2547-2558 被引量:28
标识
DOI:10.1109/jbhi.2021.3131671
摘要

Improving the detection accuracy of pulmonary nodules plays an important role in the diagnosis and early treatment of lung cancer. In this paper, a multiscale aggregation network (MSANet), which integrates spatial and channel information, is proposed for 3D pulmonary nodule detection. MSANet is designed to improve the network's ability to extract information and realize multiscale information fusion. First, multiscale aggregation interaction strategies are used to extract multilevel features and avoid feature fusion interference caused by large resolution differences. These strategies can effectively integrate the contextual information of adjacent resolutions and help to detect different sized nodules. Second, the feature extraction module is designed for efficient channel attention and self-calibrated convolutions (ECA-SC) to enhance the interchannel and local spatial information. ECA-SC also recalibrates the features in the feature extraction process, which can realize adaptive learning of feature weights and enhance the information extraction ability of features. Third, the distribution ranking (DR) loss is introduced as the classification loss function to solve the problem of imbalanced data between positive and negative samples. The proposed MSANet is comprehensively compared with other pulmonary nodule detection networks on the LUNA16 dataset, and a CPM score of 0.920 is obtained. The results show that the sensitivity for detecting pulmonary nodules is improved and that the average number of false-positives is effectively reduced. The proposed method has advantages in pulmonary nodule detection and can effectively assist radiologists in pulmonary nodule detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助satchzhao采纳,获得10
刚刚
刚刚
dhlswpu发布了新的文献求助10
刚刚
Orange应助无辜的半蕾采纳,获得10
刚刚
gjh完成签到,获得积分20
1秒前
冰魂应助小离采纳,获得10
1秒前
Oz完成签到,获得积分10
1秒前
洁净采梦发布了新的文献求助10
2秒前
wanci应助Chen采纳,获得10
3秒前
3秒前
4秒前
fdtrdtrd发布了新的文献求助10
4秒前
4秒前
4秒前
ding应助燃烧的荷包蛋采纳,获得10
4秒前
5秒前
平常狗发布了新的文献求助10
6秒前
6秒前
7秒前
陈艺鹏完成签到,获得积分10
7秒前
8秒前
土豆子发布了新的文献求助10
9秒前
Jane发布了新的文献求助10
9秒前
10秒前
10秒前
火星上冥王星完成签到,获得积分10
10秒前
www发布了新的文献求助10
11秒前
paleo-地质完成签到,获得积分10
11秒前
神勇惜海完成签到,获得积分20
11秒前
12秒前
13秒前
zhu0101发布了新的文献求助10
13秒前
14秒前
14秒前
酷波er应助无心的凡柔采纳,获得10
15秒前
luogan完成签到,获得积分10
15秒前
阿巴阿巴完成签到,获得积分10
15秒前
神勇惜海发布了新的文献求助10
15秒前
细心不二完成签到,获得积分10
15秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831915
求助须知:如何正确求助?哪些是违规求助? 3374157
关于积分的说明 10483719
捐赠科研通 3094060
什么是DOI,文献DOI怎么找? 1703290
邀请新用户注册赠送积分活动 819345
科研通“疑难数据库(出版商)”最低求助积分说明 771451