An investigation of abnormal grain growth in Zr doped CoCrFeNi HEAs through in-situ formed oxide phases

材料科学 纳米晶材料 退火(玻璃) 微观结构 晶粒生长 粒度 冶金 氧化物 纳米技术
作者
Mustafa Tekin,Gökhan Polat,Hasan Kotan
出处
期刊:Intermetallics [Elsevier BV]
卷期号:146: 107588-107588 被引量:3
标识
DOI:10.1016/j.intermet.2022.107588
摘要

Abnormal grain growth (AGG) in nanocrystalline (CoCrFeNi)100-xZrx (x = 1 and 4 at. %) HEAs, prepared through high energy mechanical alloying, was comprehensively investigated upon annealing. Transmission electron microscopy (TEM), including high angle annular dark field imaging (HAADF) and energy dispersive spectroscopy (EDS) mapping, focused ion beam microscopy (FIB), and X-ray diffraction experiments (XRD) were utilized to investigate the microstructures as a function of added Zr content and temperature exposures. The results showed that nanocrystalline grains of the as-milled HEAs did not increase significantly upon annealing up to 700 °C as the nanocrystalline grain sizes were retained. However, grain growth was observed in (CoCrFeNi)99Zr1 after annealing at 900 °C, which turned into AGG after annealing at a higher temperature of 1100 °C, disrupting the equiaxed grain structures observed at 900 °C. Although the increased amount of Zr doping reduced the average grain size in (CoCrFeNi)96Zr4, bimodal grain structure existed in the microstructure composed of a matrix with 255 nm grain size and abnormally grown grains up to 3 μm. The observed AGG was attributed to the pinning effect of in-situ formed secondary oxide phases. The microstructural evolution as a function of Zr doping and annealing temperatures was also correlated with the microhardness test results. The AGG and bimodal grain structure reported for the Zr doped CoCrFeNi HEA may open a new avenue to produce HEAs with the enhanced strength-ductility combination due to the incorporation of larger grains and in-situ formed oxide phases in a fine-grained matrix.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jianhua发布了新的文献求助10
刚刚
李健应助古月采纳,获得10
2秒前
2秒前
青橘短衫完成签到,获得积分10
5秒前
squrreil完成签到,获得积分10
6秒前
8秒前
8秒前
8秒前
8秒前
10秒前
10秒前
JamesPei应助秋子采纳,获得10
10秒前
刀锋发布了新的文献求助10
11秒前
晓王完成签到,获得积分10
12秒前
12秒前
13秒前
wly1111发布了新的文献求助10
13秒前
14秒前
15秒前
zsj发布了新的文献求助10
16秒前
晓王发布了新的文献求助10
16秒前
OrthoLee完成签到,获得积分10
17秒前
米子发布了新的文献求助10
19秒前
19秒前
SWEETYXY完成签到,获得积分10
20秒前
21秒前
踏实的哑铃完成签到 ,获得积分10
21秒前
wly1111完成签到,获得积分10
23秒前
ding应助清新的音响采纳,获得10
23秒前
rye227应助轻松笙采纳,获得10
24秒前
EKo完成签到,获得积分10
24秒前
SWEETYXY发布了新的文献求助30
25秒前
秋子完成签到,获得积分10
25秒前
26秒前
温乘云完成签到,获得积分10
27秒前
852应助老木虫采纳,获得10
29秒前
29秒前
zhangjw完成签到 ,获得积分10
30秒前
来栖完成签到 ,获得积分10
30秒前
秋子发布了新的文献求助10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778128
求助须知:如何正确求助?哪些是违规求助? 3323789
关于积分的说明 10215775
捐赠科研通 3038972
什么是DOI,文献DOI怎么找? 1667723
邀请新用户注册赠送积分活动 798378
科研通“疑难数据库(出版商)”最低求助积分说明 758339