Real-time prediction for the surge of turboshaft engine using multi-branch feature fusion neural network

人工神经网络 计算机科学 人工智能 感知器 模式识别(心理学) 特征(语言学) 特征提取 希尔伯特-黄变换 噪音(视频) 数据挖掘 白噪声 电信 哲学 语言学 图像(数学)
作者
Xinglong Zhang,Tianhong Zhang,Lingwei Li,Jiaming Zhang
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part G: Journal Of Aerospace Engineering [SAGE Publishing]
卷期号:237 (2): 285-303 被引量:4
标识
DOI:10.1177/09544100221097586
摘要

The existing aeroengine instability precursor detection methods can be summarized as applying advanced signal processing technologies to various signals from the compressor test rig rather than the whole engine. Besides, these methods seriously depend on the artificial designed feature and threshold and also ignore the limit on the sensors onboard. Thus, with the help of the powerful feature extraction ability of the deep neural network, a real-time surge prediction method based on the multi-branch feature fusion neural network (MBFFNN) is proposed. First, the dataset can be obtained by using overlapping slices to divide surge test data into a sample sequence and using complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to label each sample precisely. Second, for each sample, the time-domain statistical parameters are calculated and the recurrence plot is obtained by using phase space reconstruction. Finally, the MBFFNN with mixed data type input is designed, and its performance is evaluated by the generated dataset. The experimental results show that compared with multilayer perceptron (MLP), long short-term memory (LSTM), and deep residual network (DRN), MBFFNN has the best performance on two datasets for different surge tests, which demonstrates that the proposed method for surge prediction can accurately judge the state of the aeroengine, identify the instability precursor before the surge, and give an early warning in advance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蔡姬发布了新的文献求助10
1秒前
Iris完成签到 ,获得积分10
3秒前
3秒前
3秒前
水门发布了新的文献求助30
3秒前
叶汲发布了新的文献求助10
4秒前
4秒前
赘婿应助乐乐茶采纳,获得10
5秒前
7秒前
xue完成签到,获得积分10
8秒前
万能图书馆应助李sir采纳,获得10
9秒前
后青春期的痘完成签到,获得积分10
10秒前
10秒前
mic发布了新的文献求助10
10秒前
瓜尔佳发布了新的文献求助10
12秒前
路鸣泽完成签到,获得积分20
14秒前
蔡姬完成签到,获得积分10
14秒前
15秒前
叶汲完成签到,获得积分10
15秒前
Akim应助漫漫采纳,获得10
16秒前
Keira_Chang发布了新的文献求助10
17秒前
顺利的源智完成签到,获得积分10
18秒前
bkagyin应助ohahaha采纳,获得300
18秒前
Jasper应助生动驳采纳,获得10
20秒前
21秒前
冷静映安完成签到,获得积分10
22秒前
szt完成签到,获得积分10
22秒前
拉格朗日柴犬完成签到,获得积分10
23秒前
齐明皓完成签到,获得积分10
24秒前
冰冻沙丁鱼完成签到,获得积分10
24秒前
25秒前
wanci应助李亦书采纳,获得10
25秒前
hongxing liu完成签到,获得积分10
26秒前
dudu完成签到,获得积分10
26秒前
26秒前
李sir发布了新的文献求助10
27秒前
小李发布了新的文献求助10
27秒前
lxy应助瓜尔佳采纳,获得10
27秒前
29秒前
xjcy发布了新的文献求助10
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794745
求助须知:如何正确求助?哪些是违规求助? 3339531
关于积分的说明 10296585
捐赠科研通 3056322
什么是DOI,文献DOI怎么找? 1676961
邀请新用户注册赠送积分活动 804956
科研通“疑难数据库(出版商)”最低求助积分说明 762244