AEON: a method for automatic evaluation of NLP test cases

计算机科学 人工智能 自然语言处理 考试(生物学) 古生物学 生物
作者
Jen-tse Huang,Jianping Zhang,Wenxuan Wang,Pinjia He,Yuxin Su,Michael R. Lyu
标识
DOI:10.1145/3533767.3534394
摘要

Due to the labor-intensive nature of manual test oracle construction, various automated testing techniques have been proposed to enhance the reliability of Natural Language Processing (NLP) software. In theory, these techniques mutate an existing test case (e.g., a sentence with its label) and assume the generated one preserves an equivalent or similar semantic meaning and thus, the same label. However, in practice, many of the generated test cases fail to preserve similar semantic meaning and are unnatural (e.g., grammar errors), which leads to a high false alarm rate and unnatural test cases. Our evaluation study finds that 44% of the test cases generated by the state-of-the-art (SOTA) approaches are false alarms. These test cases require extensive manual checking effort, and instead of improving NLP software, they can even degrade NLP software when utilized in model training. To address this problem, we propose AEON for Automatic Evaluation Of NLP test cases. For each generated test case, it outputs scores based on semantic similarity and language naturalness. We employ AEON to evaluate test cases generated by four popular testing techniques on five datasets across three typical NLP tasks. The results show that AEON aligns the best with human judgment. In particular, AEON achieves the best average precision in detecting semantic inconsistent test cases, outperforming the best baseline metric by 10%. In addition, AEON also has the highest average precision of finding unnatural test cases, surpassing the baselines by more than 15%. Moreover, model training with test cases prioritized by AEON leads to models that are more accurate and robust, demonstrating AEON's potential in improving NLP software.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安陌煜发布了新的文献求助10
刚刚
auraro完成签到 ,获得积分10
1秒前
1秒前
笨笨芯发布了新的文献求助50
2秒前
王皮皮发布了新的文献求助10
3秒前
汉堡包应助小袁采纳,获得10
5秒前
HBY发布了新的文献求助10
6秒前
8秒前
xyx完成签到,获得积分10
10秒前
hyhy发布了新的文献求助10
13秒前
14秒前
小苔藓完成签到 ,获得积分10
18秒前
zjz发布了新的文献求助10
20秒前
qianqiu完成签到 ,获得积分10
21秒前
xyx发布了新的文献求助10
22秒前
hyhy完成签到,获得积分10
22秒前
24秒前
sniper111完成签到,获得积分10
25秒前
25秒前
25秒前
26秒前
不吃西瓜发布了新的文献求助10
27秒前
DD发布了新的文献求助10
29秒前
科研通AI5应助南星采纳,获得10
30秒前
英俊的铭应助安陌煜采纳,获得10
33秒前
Linda完成签到 ,获得积分10
33秒前
33秒前
叶问儿完成签到,获得积分10
34秒前
pinging完成签到,获得积分10
37秒前
cgs完成签到 ,获得积分10
38秒前
江峰发布了新的文献求助10
39秒前
善学以致用应助Bin_Liu采纳,获得10
40秒前
杨旭完成签到,获得积分10
41秒前
44秒前
舒心的新波关注了科研通微信公众号
47秒前
粥粥发布了新的文献求助30
48秒前
FashionBoy应助江峰采纳,获得10
49秒前
善学以致用应助烂橙子采纳,获得10
55秒前
秋秋秋发布了新的文献求助10
57秒前
科研通AI2S应助百变小数采纳,获得10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782096
求助须知:如何正确求助?哪些是违规求助? 3327562
关于积分的说明 10232109
捐赠科研通 3042513
什么是DOI,文献DOI怎么找? 1670006
邀请新用户注册赠送积分活动 799585
科研通“疑难数据库(出版商)”最低求助积分说明 758825