Enhancing Fairness Perception – Towards Human-Centred AI and Personalized Explanations Understanding the Factors Influencing Laypeople’s Fairness Perceptions of Algorithmic Decisions

感知 透明度(行为) 心理学 情感(语言学) 社会心理学 理解力 外行人 人格 应用心理学 计算机科学 知识管理 神经科学 沟通 程序设计语言 法学 计算机安全 政治学
作者
Avital Shulner Tal,Tsvi Kuflik,Doron Kliger
出处
期刊:International Journal of Human-computer Interaction [Taylor & Francis]
卷期号:39 (7): 1455-1482 被引量:28
标识
DOI:10.1080/10447318.2022.2095705
摘要

Whether we like it or not, algorithmic decision-making systems (ADMSs) are all around us. These systems assist both public institutions and private organizations in making decisions that exert a significant impact on our lives. The widespread use of artificial intelligence (AI) and machine learning (ML) systems and the potential risks of using them are the subjects of intensive, ongoing research. It is imperative to ensure their fairness and transparency. The understanding that ADMSs should be subject to human supervision and examined for laypeople's perceived fairness is clear. Laypeople's perceptions regarding ADMSs' fairness, their understanding of the reasons underlying the systems' outcome (decision), and their comprehension of the linkage between the explanations and the results, influence their willingness to trust the systems, use them and accept their decisions. To determine and better understand which factors affect laypeople's perceptions of the fairness of algorithmic decisions, we conducted an online between-subject experiment, employing a case study of a simulated AI-based recruitment decision-support system. We focused on three aspects: system characteristics (SC), personality characteristics (PC), and demographic characteristics (DC). We conducted an in-depth analysis to determine which explanation increases the perceived fairness the most. Based on the results, we suggest a framework for predicting a layperson's perception of the fairness of the explanations. Our findings may help in understanding how to involve humans in the development and evaluation process of ADMSs, how to create personalized explanations based on the SC as well as on users' PC and DC, and, consequently, how to enhance laypeople's fairness perceptions regarding ADMSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tanhaowen发布了新的文献求助10
1秒前
1秒前
ElsaFan完成签到,获得积分10
1秒前
谦让青发布了新的文献求助10
1秒前
123发布了新的文献求助10
2秒前
doubleshake发布了新的文献求助10
2秒前
认真的焦发布了新的文献求助10
2秒前
石头完成签到,获得积分10
3秒前
翼静完成签到,获得积分10
4秒前
顺利涵菡发布了新的文献求助10
5秒前
Weiyu完成签到 ,获得积分10
5秒前
Super齐发布了新的文献求助10
5秒前
ZX0501完成签到,获得积分10
6秒前
端端完成签到,获得积分10
6秒前
兰岚完成签到,获得积分10
6秒前
ding应助梓榆采纳,获得10
6秒前
6秒前
7秒前
7秒前
慕青应助晴云采纳,获得10
7秒前
苦也完成签到,获得积分10
8秒前
Orange应助李老头采纳,获得10
8秒前
xxxx完成签到,获得积分10
9秒前
大福老师完成签到,获得积分20
9秒前
9秒前
duobao鱼完成签到,获得积分10
9秒前
木鱼完成签到 ,获得积分10
9秒前
10秒前
LZ发布了新的文献求助10
10秒前
鞋子发布了新的文献求助10
10秒前
smileriver完成签到,获得积分10
11秒前
zzz发布了新的文献求助10
11秒前
lddd发布了新的文献求助10
11秒前
kkkx完成签到,获得积分10
11秒前
Jeremy完成签到,获得积分10
12秒前
12秒前
小磊完成签到,获得积分10
12秒前
haoyooo发布了新的文献求助10
12秒前
wudizhuzhu233完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
Canon of Insolation and the Ice-age Problem 400
Fire Protection Handbook, 21st Edition volume1和volume2 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3910664
求助须知:如何正确求助?哪些是违规求助? 3456337
关于积分的说明 10888593
捐赠科研通 3182465
什么是DOI,文献DOI怎么找? 1759126
邀请新用户注册赠送积分活动 850792
科研通“疑难数据库(出版商)”最低求助积分说明 792264