Privacy-Preserving Personalized Revenue Management

收入 收益管理 差别隐私 计算机科学 集合(抽象数据类型) 范畴变量 代理(哲学) 运筹学 业务 数据挖掘 财务 机器学习 数学 哲学 认识论 程序设计语言
作者
Yanzhe Lei,Sentao Miao,Ruslan Momot
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (7): 4875-4892 被引量:17
标识
DOI:10.1287/mnsc.2023.4925
摘要

This paper examines how data-driven personalized decisions can be made while preserving consumer privacy. Our setting is one in which the firm chooses a personalized price based on each new customer’s vector of individual features; the true set of individual demand-generating parameters is unknown to the firm and so must be estimated from historical data. We extend the existing personalized pricing framework by requiring also that the firm’s pricing policy preserve consumer privacy, or (formally) that it be differentially private: an industry standard for privacy preservation. We develop privacy-preserving personalized pricing algorithms and show that they achieve near-optimal revenue by deriving theoretical (upper and lower) performance bounds. Our analyses further suggest that, if the firm possesses a sufficient amount of historical data, then it can achieve a certain level of differential privacy almost “for free.” That is, the revenue loss due to privacy preservation is of smaller order than that due to estimation. We confirm our theoretical findings in a series of numerical experiments based on synthetically generated and online auto lending (CPRM-12-001) data sets. Finally, motivated by practical considerations, we also extend our algorithms and findings to a variety of alternative settings, including multiproduct pricing with substitution effect, discrete feasible price set, categorical sensitive features, and personalized assortment optimization. This paper was accepted by Vishal Gaur, operations management. Funding: R. Momot acknowledges financial support from the HEC Paris Foundation and the Agence Nationale de la Recherche (French National Research Agency) “Investissements d’Avenir” [Grant LabEx Ecodec/ANR-11-LABX-0047] during the initial stages of this project. Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/mnsc.2023.4925 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酸萝卜发布了新的文献求助10
1秒前
2秒前
清爽冷风完成签到 ,获得积分10
2秒前
3秒前
多肉葡萄完成签到 ,获得积分10
5秒前
李剑鸿发布了新的文献求助200
5秒前
是氓呀发布了新的文献求助10
5秒前
天天快乐应助负责的妙松采纳,获得10
6秒前
7秒前
wang发布了新的文献求助10
8秒前
研友_VZG7GZ应助杨yang采纳,获得10
11秒前
授业解惑的哑铃完成签到,获得积分10
14秒前
wang完成签到,获得积分10
17秒前
bkagyin应助是氓呀采纳,获得10
18秒前
19秒前
dorothy_meng完成签到,获得积分10
20秒前
vivi完成签到,获得积分10
22秒前
23秒前
杨yang发布了新的文献求助10
23秒前
肖肖肖完成签到 ,获得积分10
26秒前
李剑鸿完成签到,获得积分10
26秒前
wzll完成签到,获得积分10
26秒前
fishhh应助内向的绮南采纳,获得10
29秒前
调皮的达完成签到,获得积分10
30秒前
科研通AI5应助李剑鸿采纳,获得30
30秒前
是氓呀完成签到,获得积分10
31秒前
31秒前
机灵的笼包完成签到,获得积分10
32秒前
小白发布了新的文献求助10
32秒前
华仔应助yangsouth采纳,获得10
35秒前
38秒前
Erin完成签到 ,获得积分0
38秒前
可爱的函函应助乙醇采纳,获得10
40秒前
陈影发布了新的文献求助20
40秒前
鱼鱼完成签到 ,获得积分10
42秒前
hsh留下了新的社区评论
44秒前
46秒前
46秒前
小武哥完成签到 ,获得积分10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778882
求助须知:如何正确求助?哪些是违规求助? 3324413
关于积分的说明 10218351
捐赠科研通 3039488
什么是DOI,文献DOI怎么找? 1668198
邀请新用户注册赠送积分活动 798570
科研通“疑难数据库(出版商)”最低求助积分说明 758440