MRDFlow: Unsupervised Optical Flow Estimation Network With Multi-Scale Recurrent Decoder

计算机科学 光流 人工智能 基本事实 无监督学习 采样(信号处理) 一般化 模式识别(心理学) 计算机视觉 图像(数学) 数学 滤波器(信号处理) 数学分析
作者
Rui Zhao,Ruiqin Xiong,Ziluo Ding,Xiaopeng Fan,Jian Zhang,Tiejun Huang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (7): 4639-4652 被引量:6
标识
DOI:10.1109/tcsvt.2021.3135440
摘要

Optical flow estimation is a fundamental task in computer vision and image processing. Due to the difficulty in obtaining the ground truth of flow field, unsupervised learning approaches attract more and more research interests in recent years. However, despite of their good generalization capability, unsupervised optical flow methods suffer in the scenarios with large displacement, small objects, and occlusions. In this work, we propose a novel optical flow network based on decoder with multi-scale kernels. Different from previous U-Net like or pyramidal methods, we design our network based on RAFT architecture that with a 4D correlation layer and recurrent decoder. More importantly, we incorporate three novel ideas with regard to the input, information processing and output of the update units improve the performance. Firstly, we utilize various motion-related information as input to the update units. Secondly, we propose a module of multi-scale update unit. Thirdly, for the final flow up-sampling procedure, we propose an image-guided up-sampling loss to guide the learning of up-sampling masks. Our model is trained by the occlusion-aware photometric loss, edge-aware smoothness loss, self-supervised loss, and image-guided up-sampling loss. Experimental results demonstrate that our model achieves the state-of-the-art performance on both Sintel and KITTI and outperforms other unsupervised optical flow methods remarkably.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邓佳鑫Alan应助司空豁采纳,获得10
刚刚
Ari完成签到,获得积分10
1秒前
小星完成签到,获得积分10
1秒前
肥猫橙发布了新的文献求助30
1秒前
啊阿阿阿沐完成签到,获得积分10
1秒前
1秒前
共享精神应助一介书生采纳,获得10
1秒前
冰魂应助一介书生采纳,获得10
1秒前
SciGPT应助一介书生采纳,获得10
2秒前
SciGPT应助一介书生采纳,获得10
2秒前
共享精神应助一介书生采纳,获得10
2秒前
易银辉发布了新的文献求助10
2秒前
lssah完成签到,获得积分10
2秒前
Li关注了科研通微信公众号
2秒前
深情安青应助海风奕婕采纳,获得20
3秒前
鼠鼠完成签到 ,获得积分10
4秒前
Owen应助丁峰采纳,获得10
5秒前
laity发布了新的文献求助10
5秒前
冰魂应助Jason采纳,获得150
5秒前
5秒前
香锅不要辣完成签到 ,获得积分10
6秒前
6秒前
6秒前
leiyang49完成签到,获得积分10
6秒前
fox力关注了科研通微信公众号
7秒前
brd发布了新的文献求助30
7秒前
田様应助CT采纳,获得10
7秒前
Ava应助甜甜采纳,获得10
7秒前
科研暴徒完成签到,获得积分10
8秒前
kero完成签到,获得积分10
8秒前
sunny完成签到,获得积分10
8秒前
论文顺利完成签到,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
夏日冰淇淋完成签到,获得积分10
9秒前
卡卡发布了新的文献求助20
9秒前
swing完成签到 ,获得积分10
10秒前
iNk应助不学无墅采纳,获得10
10秒前
DAYDAY完成签到 ,获得积分10
11秒前
FashionBoy应助任晴采纳,获得10
11秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3892755
求助须知:如何正确求助?哪些是违规求助? 3435603
关于积分的说明 10794247
捐赠科研通 3160803
什么是DOI,文献DOI怎么找? 1745632
邀请新用户注册赠送积分活动 842989
科研通“疑难数据库(出版商)”最低求助积分说明 786996