Machine-learning-based anomaly detection in optical fiber monitoring

异常检测 计算机科学 窃听 自编码 异常(物理) 净流量 断层(地质) 实时计算 深度学习 数据挖掘 计算机网络 人工智能 凝聚态物理 物理 地质学 地震学
作者
Khouloud Abdelli,Joo Yeon Cho,Florian Azendorf,Helmut Grießer,Carsten Tropschug,Stephan Pachnicke
出处
期刊:Journal of Optical Communications and Networking [The Optical Society]
卷期号:14 (5): 365-365 被引量:40
标识
DOI:10.1364/jocn.451289
摘要

Secure and reliable data communication in optical networks is critical for high-speed Internet. However, optical fibers, serving as the data transmission medium providing connectivity to billons of users worldwide, are prone to a variety of anomalies resulting from hard failures (e.g., fiber cuts) and malicious physical attacks [e.g., optical eavesdropping (fiber tapping)]. Such anomalies may cause network disruption, thereby inducing huge financial and data losses, compromising the confidentiality of optical networks by gaining unauthorized access to the carried data, or gradually degrading the network operations. Therefore, it is highly required to implement efficient anomaly detection, diagnosis, and localization schemes for enhancing the availability and reliability of optical networks. In this paper, we propose a data-driven approach to accurately and quickly detect, diagnose, and localize fiber fault anomalies, including fiber cuts and optical eavesdropping attacks. The proposed method combines an autoencoder-based anomaly detection and an attention-based bidirectional gated recurrent unit algorithm, whereby the former is used for fault detection and the latter is adopted for fault diagnosis and localization once an anomaly is detected by the autoencoder. We verify the efficiency of our proposed approach by experiments under various attack anomaly scenarios using real operational data. The experimental results demonstrate that (i) the autoencoder detects any fiber fault or anomaly with an F1 score of 96.86%, and (ii) the attention-based bidirectional gated recurrent unit algorithm identifies the detected anomalies with an average accuracy of 98.2% and localizes the faults with an average root mean square error of 0.19 m.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
平常万言发布了新的文献求助10
2秒前
开放映安发布了新的文献求助10
2秒前
5秒前
呵呵发布了新的文献求助10
5秒前
赘婿应助DreamSeker采纳,获得10
6秒前
南南发布了新的文献求助10
7秒前
CipherSage应助疯狂的书竹采纳,获得10
9秒前
虚幻的小海豚完成签到,获得积分10
9秒前
9秒前
无限符号发布了新的文献求助10
9秒前
zgnh完成签到,获得积分10
10秒前
kajimi完成签到,获得积分10
11秒前
13秒前
嘻嘻发布了新的文献求助10
14秒前
ddffgz发布了新的文献求助10
14秒前
14秒前
共享精神应助haonanchen采纳,获得10
16秒前
16秒前
无限符号完成签到,获得积分20
16秒前
慕辰完成签到,获得积分10
17秒前
比蓝色更深完成签到,获得积分10
17秒前
BzForte发布了新的文献求助10
17秒前
CN发布了新的文献求助10
19秒前
19秒前
我是老大应助zq采纳,获得10
19秒前
19秒前
19秒前
简单以冬完成签到,获得积分10
19秒前
21秒前
21秒前
落后凝莲完成签到,获得积分10
22秒前
Akim应助ddffgz采纳,获得10
22秒前
快晴完成签到,获得积分10
22秒前
嘚嘚完成签到,获得积分10
22秒前
ww完成签到,获得积分10
23秒前
23秒前
caihong1发布了新的文献求助20
24秒前
科研痴发布了新的文献求助10
24秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4114515
求助须知:如何正确求助?哪些是违规求助? 3653029
关于积分的说明 11567520
捐赠科研通 3356986
什么是DOI,文献DOI怎么找? 1843910
邀请新用户注册赠送积分活动 909779
科研通“疑难数据库(出版商)”最低求助积分说明 826509