Controlling covalent chemistry on graphene oxide

石墨烯 氧化物 反应性(心理学) 衍生化 表面改性 纳米技术 环氧化物 化学 共价键 材料科学 组合化学 有机化学 催化作用 医学 病理 物理化学 高效液相色谱法 替代医学
作者
Shi Guo,Slaven Garaj,Alberto Bianco,Cécilia Ménard‐Moyon
出处
期刊:Nature Reviews Physics [Springer Nature]
卷期号:4 (4): 247-262 被引量:78
标识
DOI:10.1038/s42254-022-00422-w
摘要

Graphene has attracted intensive research interest in many fields, owing to its remarkable physicochemical properties. Nevertheless, its low dispersibility in most organic solvents and in water, and its tendency to aggregate, prevent full exploitation of its properties. Graphene oxide (GO) is an alternative material that exhibits high dispersibility in polar solvents. GO contains abundant oxygen-containing groups, mainly epoxide and hydroxy groups, which can be further chemically derivatized. However, because of GO’s high reactivity, several reactions may occur simultaneously, often leading to uncontrolled GO derivatives. Moreover, because GO can be easily reduced, functionalization should be performed under mild conditions. In this Review, we discuss the chemical reactivity of GO and explore issues that hamper precise control of its functionalization, such as its instability, the lack of a well-defined chemical structure and the presence of impurities. We focus on strategies for the selective derivatization of the oxygenated groups and C=C bonds, along with the challenges for unambiguous characterization of the resulting structures. We briefly review applications of GO materials, relating their chemistry and nanostructure to desired physical properties and function, and chart future directions for improving the control of GO chemistry. Graphene oxide (GO) has attracted intensive research interest, owing to remarkable physicochemical properties. Nevertheless, its high chemical reactivity and low stability may lead to uncontrolled GO derivatives. The chemistry of GO can be controlled by selective derivatization of the oxygenated groups and C=C bonds and by appropriate characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Noel举报求助违规成功
1秒前
个性的紫菜举报求助违规成功
1秒前
sars518举报求助违规成功
1秒前
1秒前
2秒前
3秒前
4秒前
孟似狮完成签到,获得积分20
6秒前
hgh发布了新的文献求助10
8秒前
ss发布了新的文献求助10
10秒前
11秒前
缥缈涵菡完成签到,获得积分20
11秒前
12秒前
领导范儿应助哈哈采纳,获得10
16秒前
17秒前
寻道图强应助程阿sir采纳,获得30
19秒前
20秒前
棠梨子完成签到,获得积分10
21秒前
个性的紫菜应助欣慰土豆采纳,获得10
22秒前
所所应助从容雨筠采纳,获得10
23秒前
23秒前
风吹麦田应助WangLL采纳,获得10
24秒前
25秒前
李健应助希卡利是光采纳,获得10
25秒前
FashionBoy应助rafa采纳,获得10
26秒前
sars518应助wlp采纳,获得20
27秒前
amywang1931发布了新的文献求助10
28秒前
SUN发布了新的文献求助10
29秒前
muzi发布了新的文献求助10
30秒前
30秒前
30秒前
30秒前
聪明可爱小绘理完成签到,获得积分10
31秒前
三更雨完成签到 ,获得积分10
33秒前
34秒前
35秒前
36秒前
36秒前
希卡利是光完成签到,获得积分20
36秒前
36秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2417096
求助须知:如何正确求助?哪些是违规求助? 2109494
关于积分的说明 5334666
捐赠科研通 1836610
什么是DOI,文献DOI怎么找? 914741
版权声明 561068
科研通“疑难数据库(出版商)”最低求助积分说明 489200