High-Performance Thermoelectrics Based on Solution-Grown SnSe Nanostructures

材料科学 纳米晶材料 热电效应 热电材料 纳米技术 声子散射 纳米晶 纳米结构 热导率 复合材料 热力学 物理
作者
Sushmita Chandra,Prabir Dutta,Kanishka Biswas
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (1): 7-14 被引量:54
标识
DOI:10.1021/acsnano.1c10584
摘要

Two-dimensional layered tin selenide (SnSe) has attracted immense interest in thermoelectrics due to its ultralow lattice thermal conductivity and high thermoelectric performance. To date, the majority of thermoelectric studies of SnSe have been based on single crystals. However, because synthesizing SnSe single crystals is an expensive, time-consuming process that requires high temperatures and because SnSe single crystals have relatively weaker mechanical stability, they are not favorable for scaling up synthesis, commercialization, or practical applications. As a result, research on nanocrystalline SnSe that can be produced in large quantities by simple and low-temperature solution-phase synthesis is needed. In this Perspective, we discuss the progress in thermoelectric properties of SnSe with a particular emphasis on nanocrystalline SnSe, which is grown in solution. We first describe the state-of-the-art high-performance single crystal and polycrystals of SnSe and their importance and drawbacks and discuss how nanocrystalline SnSe can solve some of these challenges. We illustrate different solution-phase synthesis procedures to produce various SnSe nanostructures and discuss their thermoelectric properties. We also highlight a unique solution-phase synthesis technique to prepare CdSe-coated SnSe nanocomposites and its unprecedented thermoelectric figure of merit (ZT) of 2.2 at 786 K, as reported in this issue of ACS Nano. In general, solution synthesis showed excellent control over nanoscale grain growth, and nanocrystalline SnSe shows ultralow thermal conductivity due to strong phonon scattering by the nanoscale grain boundaries. Finally, we offer insight into the opportunities and challenges associated with nanocrystalline SnSe synthesized by the solution route and its future in thermoelectric energy conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
科研通AI2S应助欣慰的盼芙采纳,获得10
2秒前
赘婿应助粥粥采纳,获得10
4秒前
7秒前
8秒前
旺旺完成签到 ,获得积分10
8秒前
JamesPei应助wqqwds采纳,获得10
9秒前
10秒前
凌云完成签到,获得积分10
14秒前
务实的听筠完成签到,获得积分20
14秒前
15秒前
大模型应助雾霭迷茫采纳,获得10
15秒前
文心理发布了新的文献求助80
15秒前
15秒前
杰尼龟的鱼完成签到 ,获得积分10
16秒前
开开完成签到,获得积分20
16秒前
贝贝完成签到,获得积分10
18秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
67号发布了新的文献求助10
22秒前
23秒前
23秒前
勤奋惜寒发布了新的文献求助20
23秒前
科研通AI5应助tao采纳,获得10
24秒前
25秒前
自信问凝完成签到,获得积分10
25秒前
阳光的雪珊完成签到 ,获得积分10
25秒前
26秒前
26秒前
wqqwds发布了新的文献求助10
27秒前
胡萝卜发布了新的文献求助10
28秒前
伍声痕完成签到,获得积分10
29秒前
wen发布了新的文献求助10
29秒前
meng发布了新的文献求助10
31秒前
31秒前
dz发布了新的文献求助10
31秒前
nteicu发布了新的文献求助10
32秒前
gaoyayaaa完成签到,获得积分10
33秒前
打野完成签到,获得积分10
34秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5141487
求助须知:如何正确求助?哪些是违规求助? 4339932
关于积分的说明 13516171
捐赠科研通 4179566
什么是DOI,文献DOI怎么找? 2291943
邀请新用户注册赠送积分活动 1292581
关于科研通互助平台的介绍 1235087