Multiview Deep Subspace Clustering Networks

聚类分析 人工智能 计算机科学 模式识别(心理学) 特征学习 子空间拓扑 模糊聚类 特征向量
作者
Pengfei Zhu,Xinjie Yao,Yu Wang,Binyuan Hui,Dawei Du,Qinghua Hu
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (7): 4280-4293 被引量:45
标识
DOI:10.1109/tcyb.2024.3372309
摘要

Multiview subspace clustering aims to discover the inherent structure of data by fusing multiple views of complementary information. Most existing methods first extract multiple types of handcrafted features and then learn a joint affinity matrix for clustering. The disadvantage of this approach lies in two aspects: 1) multiview relations are not embedded into feature learning and 2) the end-to-end learning manner of deep learning is not suitable for multiview clustering. Even when deep features have been extracted, it is a nontrivial problem to choose a proper backbone for clustering on different datasets. To address these issues, we propose the multiview deep subspace clustering networks (MvDSCNs), which learns a multiview self-representation matrix in an end-to-end manner. The MvDSCN consists of two subnetworks, i.e., a diversity network (Dnet) and a universality network (Unet). A latent space is built using deep convolutional autoencoders, and a self-representation matrix is learned in the latent space using a fully connected layer. Dnet learns view-specific self-representation matrices, whereas Unet learns a common self-representation matrix for all views. To exploit the complementarity of multiview representations, the Hilbert-Schmidt independence criterion (HSIC) is introduced as a diversity regularizer that captures the nonlinear, high-order interview relations. Because different views share the same label space, the self-representation matrices of each view are aligned to the common one by universality regularization. The MvDSCN also unifies multiple backbones to boost clustering performance and avoid the need for model selection. Experiments demonstrate the superiority of the MvDSCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助风中凝芙采纳,获得10
刚刚
刚刚
李健的小迷弟应助略略略采纳,获得10
1秒前
1秒前
2秒前
阿木木完成签到,获得积分10
2秒前
2秒前
peng发布了新的文献求助10
2秒前
3秒前
后知后觉完成签到,获得积分10
3秒前
3秒前
QZC完成签到 ,获得积分10
4秒前
4秒前
小小酥被卷了完成签到,获得积分10
4秒前
SciGPT应助唧唧采纳,获得10
6秒前
6秒前
酷炫的毛巾应助王菲采纳,获得10
6秒前
6秒前
小萌新发布了新的文献求助10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得100
7秒前
华仔应助科研通管家采纳,获得10
7秒前
7秒前
大聪明应助科研通管家采纳,获得10
7秒前
7秒前
风中冰香应助科研通管家采纳,获得20
7秒前
7秒前
7秒前
orixero应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
changping应助科研通管家采纳,获得10
7秒前
7秒前
烟花应助科研通管家采纳,获得10
7秒前
三年发布了新的文献求助10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
大聪明应助科研通管家采纳,获得10
7秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388748
求助须知:如何正确求助?哪些是违规求助? 4511007
关于积分的说明 14037429
捐赠科研通 4421757
什么是DOI,文献DOI怎么找? 2428916
邀请新用户注册赠送积分活动 1421496
关于科研通互助平台的介绍 1400650