CD81号
丙型肝炎病毒
病毒学
生物
病毒进入
表位
病毒
病毒包膜
化学
细胞生物学
抗体
病毒复制
遗传学
作者
Longxing Cao,Bowen Yu,Dandan Kong,Qian Cong,Yu Tao,Zibo Chen,Zhenzheng Hu,Haishuang Chang,Jin Zhong,David Baker,Yongning He
出处
期刊:PLOS Pathogens
[Public Library of Science]
日期:2019-05-22
卷期号:15 (5): e1007759-e1007759
被引量:28
标识
DOI:10.1371/journal.ppat.1007759
摘要
Hepatitis C virus (HCV) is a member of Hepacivirus and belongs to the family of Flaviviridae. HCV infects millions of people worldwide and may lead to cirrhosis and hepatocellular carcinoma. HCV envelope proteins, E1 and E2, play critical roles in viral cell entry and act as major epitopes for neutralizing antibodies. However, unlike other known flaviviruses, it has been challenging to study HCV envelope proteins E1E2 in the past decades as the in vitro expressed E1E2 heterodimers are usually of poor quality, making the structural and functional characterization difficult. Here we express the ectodomains of HCV E1E2 heterodimer with either an Fc-tag or a de novo designed heterodimeric tag and are able to isolate soluble E1E2 heterodimer suitable for functional and structural studies. Then we characterize the E1E2 heterodimer by electron microscopy and model the structure by the coevolution based modeling strategy with Rosetta, revealing the potential interactions between E1 and E2. Moreover, the E1E2 heterodimer is applied to examine the interactions with the known HCV receptors, neutralizing antibodies as well as the inhibition of HCV infection, confirming the functionality of the E1E2 heterodimer and the binding profiles of E1E2 with the cellular receptors. Therefore, the expressed E1E2 heterodimer would be a valuable target for both viral studies and vaccination against HCV.
科研通智能强力驱动
Strongly Powered by AbleSci AI