无定形磷酸钙
脱盐
牙本质
再矿化
材料科学
核化学
牙齿再矿化
磷酸盐
牙科
钙
灌木岩
搪瓷漆
氟化物
模拟体液
纳米复合材料
生物活性玻璃
磷灰石
生物相容性
复合材料
化学
医学
有机化学
冶金
作者
Michael D. Weir,Jianping Ruan,Ning Zhang,Laurence C. Chow,Ke Zhang,Xiaofeng Chang,Yuxing Bai,Hockin H.K. Xu
标识
DOI:10.1016/j.dental.2017.06.015
摘要
Secondary caries is a primary reason for dental restoration failures. The objective of this study was to investigate the remineralization of human dentin lesions in vitro via restorations using nanocomposites containing nanoparticles of amorphous calcium phosphate (NACP) or NACP and tetracalcium phosphate (TTCP) for the first time. NACP was synthesized by a spray-drying technique and incorporated into a resin consisting of ethoxylated bisphenol A dimethacrylate (EBPADMA) and pyromellitic glycerol dimethacrylate (PMGDM). After restoring the dentin lesions with nanocomposites as well as a non-releasing commercial composite control, the specimens were treated with cyclic demineralization (pH 4, 1 h per day) and remineralization (pH 7, 23 h per day) for 4 or 8 weeks. Calcium (Ca) and phosphate (P) ion releases from composites were measured. Dentin lesion remineralization was measured at 4 and 8 weeks by transverse microradiography (TMR). Lowering the pH increased ion release of NACP and NACP-TTCP composites. At 56 days, the released Ca concentration in mmol/L (mean ± SD; n = 3) was (13.39 ± 0.72) at pH 4, much higher than (1.19 ± 0.06) at pH 7 (p < 0.05). At 56 days, P ion concentration was (5.59 ± 0.28) at pH 4, much higher than (0.26 ± 0.01) at pH 7 (p < 0.05). Quantitative microradiography showed typical subsurface dentin lesions prior to the cyclic demineralization/remineralization treatment, and dentin remineralization via NACP and NACP-TTCP composites after 4 and 8 weeks of treatment. At 8 weeks, NACP nanocomposite achieved dentin lesion remineralization (mean ± SD; n = 15) of (48.2 ± 11.0)%, much higher than (5.0 ± 7.2)% for dentin in commercial composite group after the same cyclic demineralization/remineralization regimen (p < 0.05). Novel NACP-based nanocomposites were demonstrated to achieve dentin lesion remineralization for the first time. These results, coupled with acid-neutralization and good mechanical properties shown previously, indicate that the NACP-based nanocomposites are promising for restorations to inhibit caries and protect tooth structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI