MNIST数据库
人工智能
计算机科学
可解释性
机器学习
水准点(测量)
参数化复杂度
深度学习
人工神经网络
模式识别(心理学)
算法
大地测量学
地理
作者
Maximilian Ilse,Jakub M. Tomczak,Max Welling
出处
期刊:Cornell University - arXiv
日期:2018-01-01
被引量:655
标识
DOI:10.48550/arxiv.1802.04712
摘要
Multiple instance learning (MIL) is a variation of supervised learning where a single class label is assigned to a bag of instances. In this paper, we state the MIL problem as learning the Bernoulli distribution of the bag label where the bag label probability is fully parameterized by neural networks. Furthermore, we propose a neural network-based permutation-invariant aggregation operator that corresponds to the attention mechanism. Notably, an application of the proposed attention-based operator provides insight into the contribution of each instance to the bag label. We show empirically that our approach achieves comparable performance to the best MIL methods on benchmark MIL datasets and it outperforms other methods on a MNIST-based MIL dataset and two real-life histopathology datasets without sacrificing interpretability.
科研通智能强力驱动
Strongly Powered by AbleSci AI