RUL Prediction of Wind Turbine Gearbox Bearings Based on Self-Calibration Temporal Convolutional Network

涡轮机 卷积(计算机科学) 状态监测 方位(导航) 卷积神经网络 停工期 计算机科学 时间序列 校准 工程类 人工智能 人工神经网络 机器学习 可靠性工程 数学 统计 机械工程 电气工程
作者
Ke B. He,Zuqiang Su,Xiaoqing Tian,Hong Yu,Maolin Luo
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:43
标识
DOI:10.1109/tim.2022.3143881
摘要

The prediction of the remaining useful life (RUL) of wind turbine gearbox bearings is critical to avoid catastrophic accidents and minimize downtime. Temporal convolutional network (TCN), as a potential method of RUL prediction, utilizes dilated causal convolution to extract historic information in the time series, by which it can avoid the disadvantage of long-term dependence faced by classical recurrent neural networks (RNNs). However, a large amount of local information is lost after dilated causal convolution, restricting further improvement of accuracy in RUL prediction or even making TCN invalid when the time series data are not sufficient. To address this issue, an improved TCN denoted as self-calibration temporal convolutional network (SCTCN) is proposed for RUL prediction of wind turbine gearbox bearings, in which the dilated causal convolution of TCN is inherited to extract the long-term historic information, and the self-calibration module is used to focus on the local information in the time series. As a result, SCTCN can learn more complete historic information to improve the accuracy of RUL prediction. Bearing RUL prediction experiments on both test bench and wind turbine gearbox are performed to verify the effectiveness of the proposed method, and the experimental results show that SCTCN has higher prediction accuracy compared with other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上的寻琴完成签到,获得积分10
1秒前
1秒前
ethyxwat发布了新的文献求助10
2秒前
3秒前
5秒前
rubyyyy发布了新的文献求助30
6秒前
自信号厂完成签到 ,获得积分10
7秒前
小天发布了新的文献求助10
8秒前
仓鼠本鼠完成签到,获得积分10
8秒前
映澈发布了新的文献求助10
8秒前
8秒前
研友_VZG7GZ应助Lea采纳,获得10
10秒前
10秒前
小二郎应助清新的音响采纳,获得10
11秒前
伶俐元芹发布了新的文献求助10
12秒前
梓凝完成签到 ,获得积分10
13秒前
时影发布了新的文献求助10
13秒前
Maggie完成签到,获得积分10
15秒前
15秒前
111发布了新的文献求助10
15秒前
英姑应助电池哥采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得30
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得10
17秒前
pluto应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
18秒前
pluto应助科研通管家采纳,获得20
18秒前
科研通AI5应助科研通管家采纳,获得30
18秒前
orixero应助科研通管家采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
18秒前
liuzengzhang666完成签到,获得积分10
18秒前
爆米花应助科研通管家采纳,获得30
18秒前
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778170
求助须知:如何正确求助?哪些是违规求助? 3323851
关于积分的说明 10215999
捐赠科研通 3039020
什么是DOI,文献DOI怎么找? 1667747
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758339