最大值和最小值
数学
紧凑空间
非线性系统
能量(信号处理)
非线性薛定谔方程
薛定谔猫
薛定谔方程
数学分析
超临界流体
数学物理
纯数学
物理
量子力学
热力学
统计
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2023-01-01
卷期号:28 (2): 1342-1342
被引量:1
标识
DOI:10.3934/dcdsb.2022125
摘要
<p style='text-indent:20px;'>In this paper, we consider the existence of stable standing waves for the nonlinear Schrödinger equation with combined power nonlinearities and the Hardy potential. In the <inline-formula><tex-math id="M1">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula>-critical case, we show that the set of energy minimizers is orbitally stable by using concentration compactness principle. In the <inline-formula><tex-math id="M2">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula>-supercritical case, we show that all energy minimizers correspond to local minima of the associated energy functional and we prove that the set of energy minimizers is orbitally stable.</p>
科研通智能强力驱动
Strongly Powered by AbleSci AI