清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning Can Accurately Predict Overnight Stay, Readmission, and 30-Day Complications Following Anterior Cruciate Ligament Reconstruction

医学 逻辑回归 接收机工作特性 前交叉韧带重建术 入射(几何) 深静脉 外科 急诊医学 前交叉韧带 内科学 血栓形成 物理 光学
作者
Cesar D. Lopez,Anastasia Gazgalis,Joel R. Peterson,Jamie Confino,William N. Levine,Charles A. Popkin,T. Sean Lynch
出处
期刊:Arthroscopy [Elsevier BV]
卷期号:39 (3): 777-786.e5 被引量:14
标识
DOI:10.1016/j.arthro.2022.06.032
摘要

This study aimed to develop machine learning (ML) models to predict hospital admission (overnight stay) as well as short-term complications and readmission rates following anterior cruciate ligament reconstruction (ACLR). Furthermore, we sought to compare the ML models with logistic regression models in predicting ACLR outcomes.The American College of Surgeons National Surgical Quality Improvement Program database was queried for patients who underwent elective ACLR from 2012 to 2018. Artificial neural network ML and logistic regression models were developed to predict overnight stay, 30-day postoperative complications, and ACL-related readmission, and model performance was compared using the area under the receiver operating characteristic curve. Regression analyses were used to identify variables that were significantly associated with the predicted outcomes.A total of 21,636 elective ACLR cases met inclusion criteria. Variables associated with hospital admission included White race, obesity, hypertension, and American Society of Anesthesiologists classification 3 and greater, anesthesia other than general, prolonged operative time, and inpatient setting. The incidence of hospital admission (overnight stay) was 10.2%, 30-day complications was 1.3%, and 30-day readmission for ACLR-related causes was 0.9%. Compared with logistic regression models, artificial neural network models reported superior area under the receiver operating characteristic curve values in predicting overnight stay (0.835 vs 0.589), 30-day complications (0.742 vs 0.590), reoperation (0.842 vs 0.601), ACLR-related readmission (0.872 vs 0.606), deep-vein thrombosis (0.804 vs 0.608), and surgical-site infection (0.818 vs 0.596).The ML models developed in this study demonstrate an application of ML in which data from a national surgical patient registry was used to predict hospital admission and 30-day postoperative complications after elective ACLR. ML models developed performed well, outperforming regression models in predicting hospital admission and short-term complications following elective ACLR. ML models performed best when predicting ACLR-related readmissions and reoperations, followed by overnight stay.IV, retrospective comparative prognostic trial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助张wx_100采纳,获得10
2秒前
刘刘完成签到 ,获得积分10
13秒前
34秒前
张wx_100发布了新的文献求助10
38秒前
丹布里完成签到,获得积分20
50秒前
1437594843完成签到 ,获得积分10
1分钟前
widesky777完成签到 ,获得积分0
1分钟前
John完成签到 ,获得积分10
1分钟前
学医的小胖子完成签到 ,获得积分10
1分钟前
buno应助科研通管家采纳,获得10
2分钟前
DustxhX完成签到,获得积分10
2分钟前
NINI完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助20
2分钟前
woxinyouyou完成签到,获得积分0
2分钟前
Tales完成签到 ,获得积分10
2分钟前
所所应助DustxhX采纳,获得10
2分钟前
xue完成签到 ,获得积分10
2分钟前
冰凌心恋完成签到,获得积分10
3分钟前
3分钟前
张wx_100完成签到,获得积分10
4分钟前
QYQ完成签到 ,获得积分10
4分钟前
山山完成签到 ,获得积分10
4分钟前
4分钟前
Chen完成签到 ,获得积分10
5分钟前
CH完成签到,获得积分10
5分钟前
wendy完成签到,获得积分10
5分钟前
科研通AI5应助梁晨采纳,获得10
5分钟前
发个15分的完成签到 ,获得积分10
6分钟前
7分钟前
培培完成签到 ,获得积分10
7分钟前
可靠若云完成签到,获得积分10
7分钟前
萌兴完成签到 ,获得积分10
7分钟前
elisa828完成签到,获得积分10
7分钟前
7分钟前
stephanie_han完成签到,获得积分10
8分钟前
向阳而生完成签到,获得积分10
8分钟前
楼少博发布了新的文献求助10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
一盏壶完成签到,获得积分10
9分钟前
老实的乐儿完成签到 ,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957970
求助须知:如何正确求助?哪些是违规求助? 4219196
关于积分的说明 13133286
捐赠科研通 4002249
什么是DOI,文献DOI怎么找? 2190284
邀请新用户注册赠送积分活动 1205015
关于科研通互助平台的介绍 1116638