Machine Learning–Based Ultrasound Radiomics for Evaluating the Function of Transplanted Kidneys

接收机工作特性 超声波 特征(语言学) 肾功能 人工智能 医学 模式识别(心理学) 放射科 计算机科学 内科学 哲学 语言学
作者
Lili Zhu,Renjun Huang,Ming Li,Qingmin Fan,Xiaojun Zhao,Xiaofeng Wu,Fenglin Dong
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:48 (8): 1441-1452 被引量:12
标识
DOI:10.1016/j.ultrasmedbio.2022.03.007
摘要

The aim of the study described here was to investigate the value of different machine learning models based on the clinical and radiomic features of 2-D ultrasound images to evaluate post-transplant renal function (pTRF). We included 233 patients who underwent ultrasound examination after renal transplantation and divided them into the normal pTRF group (group 1) and the abnormal pTRF group (group 2) based on their estimated glomerular filtration rates. The patients with abnormal pTRF were further subdivided into the non-severe renal function impairment group (group 2A) and the severe impairment group (group 2B). The radiomic features were extracted from the 2-D ultrasound images of each case. The clinical and ultrasound image features as well as radiomic features from the training set were selected, and then five machine learning algorithms were used to construct models for evaluating pTRF. Receiver operating characteristic curves were used to evaluate the discriminatory ability of each model. A total of 19 radiomic features and one clinical feature (age) were retained for discriminating group 1 from group 2. The area under the receiver operating characteristic curve (AUC) values of the models ranged from 0.788 to 0.839 in the test set, and no significant differences were found between the models (all p values >0.05). A total of 17 radiomic features and 1 ultrasound image feature (thickness) were retained for discriminating group 2A from group 2B. The AUC values of the models ranged from 0.689 to 0.772, and no significant differences were found between the models (all p values >0.05). Machine learning models based on clinical and ultrasound image features, as well as radiomics features, from 2-D ultrasound images can be used to evaluate pTRF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助KIRA采纳,获得10
刚刚
1秒前
FashionBoy应助成就映之采纳,获得30
1秒前
5444发布了新的文献求助10
2秒前
3秒前
yanyan发布了新的文献求助10
5秒前
花生仔应助LJL采纳,获得10
5秒前
5秒前
hh发布了新的文献求助10
5秒前
FF应助俏皮的依瑶采纳,获得60
5秒前
完美世界应助莹仔采纳,获得10
6秒前
奋斗完成签到 ,获得积分10
7秒前
9秒前
qiming完成签到,获得积分10
10秒前
10秒前
11秒前
深情安青应助嘻嘻哈哈哈采纳,获得10
12秒前
13秒前
科研通AI5应助清堂采纳,获得10
13秒前
苏曼青完成签到,获得积分10
14秒前
科研小兰完成签到 ,获得积分10
15秒前
17秒前
17秒前
汉堡包应助龙华之士采纳,获得10
17秒前
18秒前
20秒前
20秒前
aaiirrii发布了新的文献求助20
21秒前
小蘑菇应助眼睛大花生采纳,获得10
21秒前
Orange应助yu采纳,获得10
22秒前
22秒前
北北北应助iboy采纳,获得10
23秒前
大方的笑萍完成签到 ,获得积分10
23秒前
柚子完成签到,获得积分10
25秒前
26秒前
我是老大应助sunshine采纳,获得10
27秒前
27秒前
27秒前
如意的灰狼完成签到,获得积分20
27秒前
游戏人间完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4462260
求助须知:如何正确求助?哪些是违规求助? 3925596
关于积分的说明 12181470
捐赠科研通 3577911
什么是DOI,文献DOI怎么找? 1965640
邀请新用户注册赠送积分活动 1004394
科研通“疑难数据库(出版商)”最低求助积分说明 898864