清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning–Based Ultrasound Radiomics for Evaluating the Function of Transplanted Kidneys

接收机工作特性 超声波 特征(语言学) 肾功能 人工智能 医学 模式识别(心理学) 放射科 计算机科学 内科学 哲学 语言学
作者
Lili Zhu,Renjun Huang,Ming Li,Qingmin Fan,Xiaojun Zhao,Xiaofeng Wu,Fenglin Dong
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:48 (8): 1441-1452 被引量:12
标识
DOI:10.1016/j.ultrasmedbio.2022.03.007
摘要

The aim of the study described here was to investigate the value of different machine learning models based on the clinical and radiomic features of 2-D ultrasound images to evaluate post-transplant renal function (pTRF). We included 233 patients who underwent ultrasound examination after renal transplantation and divided them into the normal pTRF group (group 1) and the abnormal pTRF group (group 2) based on their estimated glomerular filtration rates. The patients with abnormal pTRF were further subdivided into the non-severe renal function impairment group (group 2A) and the severe impairment group (group 2B). The radiomic features were extracted from the 2-D ultrasound images of each case. The clinical and ultrasound image features as well as radiomic features from the training set were selected, and then five machine learning algorithms were used to construct models for evaluating pTRF. Receiver operating characteristic curves were used to evaluate the discriminatory ability of each model. A total of 19 radiomic features and one clinical feature (age) were retained for discriminating group 1 from group 2. The area under the receiver operating characteristic curve (AUC) values of the models ranged from 0.788 to 0.839 in the test set, and no significant differences were found between the models (all p values >0.05). A total of 17 radiomic features and 1 ultrasound image feature (thickness) were retained for discriminating group 2A from group 2B. The AUC values of the models ranged from 0.689 to 0.772, and no significant differences were found between the models (all p values >0.05). Machine learning models based on clinical and ultrasound image features, as well as radiomics features, from 2-D ultrasound images can be used to evaluate pTRF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
1437594843完成签到 ,获得积分10
30秒前
合适的寄灵完成签到 ,获得积分10
38秒前
晟sheng完成签到 ,获得积分10
1分钟前
cadcae完成签到,获得积分10
1分钟前
轻松小张完成签到,获得积分10
1分钟前
晨溪完成签到,获得积分10
1分钟前
1分钟前
al完成签到 ,获得积分10
1分钟前
无奈的萍完成签到,获得积分10
1分钟前
涨涨涨张完成签到 ,获得积分10
1分钟前
Emperor完成签到 ,获得积分0
1分钟前
lovelife完成签到,获得积分10
1分钟前
emxzemxz完成签到 ,获得积分10
1分钟前
小小aa16完成签到,获得积分10
2分钟前
widesky777完成签到 ,获得积分0
2分钟前
Raul完成签到 ,获得积分10
2分钟前
四十四次日落完成签到 ,获得积分10
2分钟前
3分钟前
yy完成签到 ,获得积分10
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
隐形曼青应助buzhui采纳,获得30
3分钟前
和谐的夏岚完成签到 ,获得积分10
4分钟前
yuehan完成签到 ,获得积分10
4分钟前
搞怪曼容完成签到,获得积分10
4分钟前
踏实的书包完成签到,获得积分10
4分钟前
上官若男应助搞怪曼容采纳,获得10
4分钟前
huangzsdy完成签到,获得积分10
4分钟前
铜锣湾新之助完成签到 ,获得积分10
4分钟前
冬菊完成签到 ,获得积分10
4分钟前
Tonald Yang完成签到 ,获得积分20
4分钟前
4分钟前
HC发布了新的文献求助10
5分钟前
5分钟前
英喆完成签到 ,获得积分10
5分钟前
buzhui发布了新的文献求助30
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
buzhui完成签到,获得积分20
5分钟前
李成恩完成签到 ,获得积分10
5分钟前
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782710
求助须知:如何正确求助?哪些是违规求助? 3328095
关于积分的说明 10234416
捐赠科研通 3043042
什么是DOI,文献DOI怎么找? 1670442
邀请新用户注册赠送积分活动 799698
科研通“疑难数据库(出版商)”最低求助积分说明 758994