Detection of ankle fractures using deep learning algorithms

医学 脚踝 射线照相术 卷积神经网络 人工智能 深度学习 算法 放射科 口腔正畸科 外科 计算机科学
作者
Soheil Ashkani‐Esfahani,Reza Mojahed Yazdi,Rohan Bhimani,Gino M. M. J. Kerkhoffs,Mario Maas,Christopher W. DiGiovanni,Bart Lubberts,Daniel Guss
出处
期刊:Foot and Ankle Surgery [Elsevier BV]
卷期号:28 (8): 1259-1265 被引量:40
标识
DOI:10.1016/j.fas.2022.05.005
摘要

Early and accurate detection of ankle fractures are crucial for optimizing treatment and thus reducing future complications. Radiographs are the most abundant imaging techniques for assessing fractures. Deep learning (DL) methods, through adequately trained deep convolutional neural networks (DCNNs), have been previously shown to faster and accurately analyze radiographic images without human intervention. Herein, we aimed to assess the performance of two different DCNNs in detecting ankle fractures using radiographs compared to the ground truth.In this retrospective case-control study, our DCNNs were trained using radiographs obtained from 1050 patients with ankle fracture and the same number of individuals with otherwise healthy ankles. Inception V3 and Renet-50 pretrained models were used in our algorithms. Danis-Weber classification method was used. Out of 1050, 72 individuals were labeled as occult fractures as they were not detected in the primary radiographic assessment. Single-view (anteroposterior) radiographs was compared with 3-views (anteroposterior, mortise, lateral) for training the DCNNs.Our DCNNs showed a better performance using 3-views images versus single-view based on greater values for accuracy, F-score, and area under the curve (AUC). The highest sensitivity was 98.7 % and specificity was 98.6 % in detection of ankle fractures using 3-views using inception V3. This model missed only one fracture on radiographs.The performance of our DCNNs showed that it can be used for developing the currently used image interpretation programs or as a separate assistant solution for the clinicians to detect ankle fractures faster and more precisely.III.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
上官若男应助深情的大碗采纳,获得10
刚刚
Lucas应助流年末逝采纳,获得10
1秒前
RUI发布了新的文献求助10
1秒前
1秒前
wuwa完成签到,获得积分10
1秒前
陈椅子的求学完成签到,获得积分10
2秒前
3秒前
叫我魔王大人完成签到,获得积分10
3秒前
俺来了发布了新的文献求助30
3秒前
3秒前
神仙姐姐关注了科研通微信公众号
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
清脆寄容发布了新的文献求助100
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
小马甲应助haidayu采纳,获得10
4秒前
wendinfgmei应助科研通管家采纳,获得10
4秒前
聪慧芷巧应助科研通管家采纳,获得10
4秒前
4秒前
如梦中完成签到,获得积分10
4秒前
ding应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
ED应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Xxanny应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
陈少华发布了新的文献求助10
5秒前
5秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
ACSM's guidelines for exercise testing and prescription, 12 ed 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3896407
求助须知:如何正确求助?哪些是违规求助? 3440258
关于积分的说明 10816649
捐赠科研通 3165237
什么是DOI,文献DOI怎么找? 1748644
邀请新用户注册赠送积分活动 844842
科研通“疑难数据库(出版商)”最低求助积分说明 788286